12.已知函數(shù)f(x)=sinwxcoswx+$\sqrt{3}{cos^2}wx-\frac{{\sqrt{3}}}{2}$(w>0),直線x=x1,x=x2是y=f(x)圖象在任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求w的值;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個單位后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

分析 (1)由三角函數(shù)恒等變換化簡函數(shù)解析式可得f(x)=sin(2$ωx+\frac{π}{3}$),由題意根據(jù)周期公式即可求得ω的值.
(2)由(1)可得f(x)=sin(4x+$\frac{π}{3}$),由函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可求解析式g(x)=sin(2x-$\frac{π}{6}$),根據(jù)x的范圍,由正弦函數(shù)的圖象和性質(zhì)即可求得g(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

解答 解:(1)f(x)=sinwxcoswx+$\sqrt{3}{cos^2}wx-\frac{{\sqrt{3}}}{2}$
=$\frac{1}{2}$sin2ωx+$\sqrt{3}×\frac{1+cos2ωx}{2}-\frac{\sqrt{3}}{2}$
=$\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}cos2ωx$
=sin(2$ωx+\frac{π}{3}$)…(3分)
由題意,最小正周期T=$\frac{2π}{2ω}$=2×$\frac{π}{4}$=$\frac{π}{2}$,解得ω=2…(6分)
(2)由(1)可得f(x)=sin(4x+$\frac{π}{3}$),…(7分)
將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個單位后,得到y(tǒng)=sin(4x-$\frac{π}{6}$)的圖象,
再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)y=g(x)=sin(2x-$\frac{π}{6}$)的圖象…(9分)
∵0$≤x≤\frac{π}{2}$,
∴-$\frac{π}{6}$≤2x-$\frac{π}{6}$≤$\frac{5π}{6}$
∴-$\frac{1}{2}≤$sin(2x-$\frac{π}{6}$)≤1
故g(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值為g($\frac{π}{3}$)=1,最小值為g(0)=-$\frac{1}{2}$…(12分)

點評 本題主要考查了三角函數(shù)恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象與性質(zhì),屬于基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖,y=f(x)是可導函數(shù),直線L:y=kx+2是曲線y=f(x)在x=3處的切線,令g(x)=xf(x),g′(x)是g(x)的導函數(shù),則g′(3)=(  )
A.-1B.0C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.為了解某校高三畢業(yè)生報考體育專業(yè)學生的體重(單位:千克),將他們的體重數(shù)據(jù)整理后得到如下頻率分布直方圖.已知圖中從左到右前3個小組的頻率之比為1:2:3,其中第二小組的頻數(shù)為12.
(Ⅰ)求該校報考體育專業(yè)學生的總人數(shù)n;
(Ⅱ)已知A、a是該校報考體育專業(yè)的兩名學生,A的體重小于55千克,a的體重不小于70千克.現(xiàn)從該校報考體育專業(yè)的學生中按分層抽樣分別抽取小于55千克和不小于70千克的學生共6名,然后在從這6人中抽取體重小于55千克的學生2人,體重不小于70千克的學生1人組成3人訓練組,求A在訓練組且a不在訓練組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如果雙曲線的離心率e=$\frac{\sqrt{5}+1}{2}$,則稱此雙曲線為黃金雙曲線.有以下幾個命題:
①雙曲線$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{\sqrt{5}-1}=1$是黃金雙曲線; 
②雙曲線y${\;}^{2}-\frac{2{x}^{2}}{\sqrt{5}+1}=1$是黃金雙曲線;
③在雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$中,F(xiàn)1為左焦點,A2為右頂點,B1(0,b),若∠F1 B1 A2=90°,則該雙曲線是黃金雙曲線;
④在雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$中,過焦點F2作實軸的垂線交雙曲線于M、N兩點,O為坐標原點,若∠MON=120°,則該雙曲線是黃金雙曲線.
其中正確命題的序號為( 。
A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆四川成都七中高三10月段測數(shù)學(文)試卷(解析版) 題型:選擇題

函數(shù)的最大值為( )

A.1 B.2 C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4}^{x}-15,x∈(-∞,2]\\{log}_{2}x,x∈(2,+∞)\end{array}\right.$,則f(f(2$\sqrt{2}$))=-7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知等比數(shù)列{an}的公比q=3,前3項和${S_3}=\frac{13}{9}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若函數(shù)f(x)=Asin(2x+φ)(A>0,0<φ<π)在$x=\frac{π}{6}$處取得最大值為a4,求函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖所示,AB為圓O的直徑,BC為圓O的切線,B為切點,D為圓O上一點,AD∥OC.
(Ⅰ)求證:OC平分∠BCD;
(Ⅱ)若AD•OC=8,求圓O半徑R的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在直角坐標系xOy中,兩坐標系取相同的長度單位,將曲線$\left\{\begin{array}{l}x=5cosθ\\ y=sinθ\end{array}$(θ為參數(shù))上每一點的橫坐標變?yōu)樵瓉淼?\frac{1}{5}$(縱坐標不變),然后將所得圖象向右平移2個單位,再向上平移3個單位得到曲線C;以原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知直線l的極坐標方程為$ρsin(α-\frac{π}{4})=\sqrt{2}$.
(Ⅰ)求曲線C的普通方程;
(Ⅱ)設直線l與曲線C交于A、B兩點,與x軸交于點P,求|PA|•|PB|的值.

查看答案和解析>>

同步練習冊答案