17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4}^{x}-15,x∈(-∞,2]\\{log}_{2}x,x∈(2,+∞)\end{array}\right.$,則f(f(2$\sqrt{2}$))=-7.

分析 直接利用分段函數(shù)求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{4}^{x}-15,x∈(-∞,2]\\{log}_{2}x,x∈(2,+∞)\end{array}\right.$,
則f(2$\sqrt{2}$)=${log}_{2}(2\sqrt{2})$=$\frac{3}{2}$.
f(f(2$\sqrt{2}$))=f($\frac{3}{2}$)=${4}^{\frac{3}{2}}-15$=-7.
故答案為:-7.

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知偶函數(shù)y=f(x)對于任意的x∈[0,$\frac{π}{2}$)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式中成立的有(2)(3)(4).
(1)$\sqrt{2}$f(-$\frac{π}{3}$)<f($\frac{π}{4}$)              
(2)$\sqrt{2}$f(-$\frac{π}{3}$)>f(-$\frac{π}{4}$)
(3)f(0)<$\sqrt{2}$f(-$\frac{π}{4}$)                
(4)f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.正偶數(shù)列有一個有趣的現(xiàn)象:
①2+4=6    
②8+10+12=14+16;
③18+20+22+24=26+28+30,…
按照這樣的規(guī)律,則2016在第31 個等式中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在平面直角坐標(biāo)系xOy中,P為不等式組$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$,所表示的區(qū)域上的一個動點(diǎn),已知點(diǎn)Q(1,-1),那么|PQ|的最大值為( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sinwxcoswx+$\sqrt{3}{cos^2}wx-\frac{{\sqrt{3}}}{2}$(w>0),直線x=x1,x=x2是y=f(x)圖象在任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求w的值;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.觀察等式:$f(\frac{1}{3})+f(\frac{2}{3})=1,f(\frac{1}{4})+f(\frac{2}{4})+f(\frac{3}{4})=\frac{3}{2},f(\frac{1}{5})+f(\frac{2}{5})+f(\frac{3}{5})+f(\frac{4}{5})=2,f(\frac{1}{6})+f(\frac{2}{6})+f(\frac{3}{6})+f(\frac{4}{6})+f(\frac{5}{6})=\frac{5}{2}$,…由以上幾個等式的規(guī)律可猜想$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…f(\frac{2013}{2015})+f(\frac{2014}{2015})$=1007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.正方體的內(nèi)切球和外接球的表面積之比為( 。
A.3:1B.3:4C.4:3D.1:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)二次函數(shù)f(x)=ax2-4x+c的值域?yàn)閇0,+∞),且f(1)≤4,則$u=\frac{a}{{{c^2}+4}}+\frac{c}{{{a^2}+4}}$的取值范圍是$\frac{1}{2}≤u≤\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)(x1,y1),(x2,y2),…,(xn,yn)是變量x和y的n個樣本點(diǎn),直線l是由這些樣本點(diǎn)通過最小二乘法得到的線性回歸方程(如圖),以下結(jié)論中正確的是(  )
A.x和y正相關(guān)
B.x和y的相關(guān)系數(shù)在-1到0之間
C.x和y的相關(guān)系數(shù)為直線l的斜率
D.當(dāng)n為偶數(shù)時,分布在l兩側(cè)的樣本點(diǎn)的個數(shù)一定相同

查看答案和解析>>

同步練習(xí)冊答案