5.如圖,y=f(x)是可導(dǎo)函數(shù),直線L:y=kx+2是曲線y=f(x)在x=3處的切線,令g(x)=xf(x),g′(x)是g(x)的導(dǎo)函數(shù),則g′(3)=(  )
A.-1B.0C.2D.4

分析 先從圖中求出切線過的點(diǎn),再求出直線L的方程,利用導(dǎo)數(shù)在切點(diǎn)處的導(dǎo)數(shù)值為切線的斜率,最后結(jié)合導(dǎo)數(shù)的概念求出g′(3)的值.

解答 解:∵直線L:y=kx+2是曲線y=f(x)在x=3處的切線,
∴f(3)=1,
又點(diǎn)(3,1)在直線L上,
∴3k+2=1,從而k=$-\frac{1}{3}$,
∴f′(3)=k=$-\frac{1}{3}$,
∵g(x)=xf(x),
∴g′(x)=f(x)+xf′(x)
則g′(3)=f(3)+3f′(3)
=1+3×($-\frac{1}{3}$)
=0,
故選:B.

點(diǎn)評 本題考查導(dǎo)數(shù)的幾何意義,曲線在切點(diǎn)處的導(dǎo)數(shù)值為曲線的切線的斜率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是( 。
A.“x<0”是“l(fā)n(x+1)<0”的充要條件
B.“?x≥2,x2-3x+2≥0”的否定是“?x<2,x2-3x+2<0”
C.采用系統(tǒng)抽樣法從某班按學(xué)號抽取5名同學(xué)參加活動,學(xué)號為5,16,27,38,49的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為60
D.在某項(xiàng)測量中,測量結(jié)果X服從正態(tài)分布N(1,σ2)(σ>0),若X在(0,1)內(nèi)取值的概率為0.4,則X在(0,2)內(nèi)取值的概率為0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知程序框圖如圖所示,則該程序框圖的功能是(  )
A.求1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{10}$的值B.求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$…+$\frac{1}{20}$的值
C.求1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{11}$的值D.求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$…+$\frac{1}{22}$的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列|an|,則an,an+1,an+2(n∈N+)成等比數(shù)列是“an+12=anan+2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.閱讀如圖的程序框圖,若輸出的y=$\frac{1}{2}$,則輸入的x的值可能為( 。
A.-1B.0C.1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知偶函數(shù)y=f(x)對于任意的x∈[0,$\frac{π}{2}$)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式中成立的有(2)(3)(4).
(1)$\sqrt{2}$f(-$\frac{π}{3}$)<f($\frac{π}{4}$)              
(2)$\sqrt{2}$f(-$\frac{π}{3}$)>f(-$\frac{π}{4}$)
(3)f(0)<$\sqrt{2}$f(-$\frac{π}{4}$)                
(4)f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=2sin$\frac{π}{2}$x,集合M={x||f(x)|=2,x>0},把M中的元素從小到大依次排成一列,得到數(shù)列{an},n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{1}{{{{a}^{2}}_{n+1}}^{\;}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求證Tn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若不等式組$\left\{\begin{array}{l}x-y≤0\\ x-2y+2≥0\\ x≥m\end{array}\right.$表示的平面區(qū)域是面積為$\frac{16}{9}$的三角形,則m的值$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sinwxcoswx+$\sqrt{3}{cos^2}wx-\frac{{\sqrt{3}}}{2}$(w>0),直線x=x1,x=x2是y=f(x)圖象在任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求w的值;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案