已知函數(shù)y=2-(sinx+cosx)2,(x∈R)
(1)求函數(shù)y的最小正周期和最大值;
(2)求函數(shù)y的單調(diào)遞增區(qū)間.
考點:三角函數(shù)中的恒等變換應用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)直接利用完全平方展開,然后,借助于二倍角公式進行求解;
(2)借助于三角函數(shù)的圖象與性質(zhì)進行求解即可.
解答: 解:(1)∵y=2-(sinx+cosx)2,
=2-(1+2sinxcosx)
=-sin2x+1,
∴T=
2
=π,
∴函數(shù)y的最小正周期π;
當sin2x=-1時,y最大值2;
(2)令
π
2
+2kπ≤2x≤
2
+2kπ,(k∈Z)
π
4
+kπ≤x≤
4
+kπ

∴函數(shù)y的單調(diào)遞增區(qū)間[
π
4
+kπ,
4
+kπ](k∈Z).
點評:本題重點考查了二倍角公式,同角三角函數(shù)基本關系式等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖是一個算法的流程圖.若輸入x的值為2,則輸出y的值是( 。
A、0
B、-
3
2
C、-1
D、-
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(Ⅰ)根據(jù)莖葉圖計算樣本均值;
(Ⅱ)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F(xiàn)分別是線段AB,BC的中點,
(Ⅰ)在PA上找一點G,使得EG∥平面PFD;.
(Ⅱ)若PD與平面ABCD所成角的余弦值是
2
5
5
,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(
π
2
+x
)cosx-sinxcos(π-x).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,已知A為銳角,f(A)=1,BC=2,B=
π
3
,求AC邊的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設原命題為:“當c>0時,若a>b,則ac>bc”.寫出它的逆命題、否命題與逆否命題,并判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,G是CC1上的動點.
(l)求證:平面ADG⊥CDD1C1;
(2)判斷B1C1與平面ADG的位置關系,并給出證明;
(3)若G是CC1的中點,求二面角G-AD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(-1,1)上的單調(diào)遞增函數(shù),解不等式:f(t-1)-f(-t)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x<-3,或x>5},P={x|(x-a)•(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.

查看答案和解析>>

同步練習冊答案