分析 先把C33化為C44,再根據(jù)組合數(shù)的性質(zhì),Cnm+Cnm-1=Cn+1m,逐個化簡,即可求出C33+C43+C53+…+C103.
解答 解:∵Cmn+Cm-1n=Cmn+1,
∴${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{10}^{3}$=C44+C43+C53+…+C103
=C54+C53+C63+…+C103
=C64+C63+C73+…+C103
=…
=C104+C103
=C114
=330.
故答案為:330.
點評 本題考查了排列數(shù)公式和組合數(shù)性質(zhì),是基礎(chǔ)的計算題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | ±1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-∞,-\frac{1}{2})$ | B. | (3,+∞) | C. | $(-∞,-\frac{1}{2})∪(3,+∞)$ | D. | (0,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12個 | B. | 13個 | C. | 14個 | D. | 15個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y<z<x | B. | z<y<x | C. | x<y<z | D. | y<x<z |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com