已知直角坐標平面上任意兩點P(x1,y1),Q(x2,y  2),定義d(P,Q)=
|x2-x1|,|x2-x1|≥|y2-y1|
|y2-y1|,|x2-x1|<|y2-y1|
.當平面上動點M(x,y)到定點A(a,b)的距離滿足|MA|=4時,則d(M,A)的取值范圍是
 
考點:兩點間距離公式的應用
專題:新定義
分析:由題意可知點M在以A為圓心,r=4為半徑的圓周上,由新定義可求出d(M,A)的最小值與最大值,即可得出結(jié)論.
解答: 解:由題意可知點M在以A為圓心,r=4為半徑的圓周上,
由新定義可知:當|x-a|=|y-b|時,d(M,A)取得最小值,d(M,A)min=2
2

當|x-a|=4,|y-b|=0或|x-a|=0,|y-b|=4時,d(M,A)取得最大值,d(M,A)max=4,
故d(M,A)的取值范圍為[2
2
,4].
故答案為:[2
2
,4].
點評:本題以新定義為載體,考查數(shù)學概念的新定義,數(shù)形結(jié)合的思想,考查距離公式的簡單應用,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某校高二(1)班舉行游戲中,有甲、乙兩個盒子,這兩個盒子中各裝有大小、形狀完全相同,但顏色不同的8個小球,其中甲盒子中裝有6個紅球、2個白球,乙盒子中裝有7個黃球、1個黑球,現(xiàn)進行摸球游戲,游戲規(guī)則:從甲盒子中摸一個紅球記4分,摸出一個白球記-1分;從乙盒子中摸出一個黃球記6分,摸出一個黑球記-2分.
(1)如果每次從甲盒子摸出一個球,記下顏色后再放回,求連續(xù)從甲盒子中摸出3個球所得總分(3次得分的總和)不少于5分的概率;
(2)設X(單位:分)為分別從甲、乙盒子中各摸一個球所獲得的總分,求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)求值:tan45°+tan15°+
3
tan45°•tan15°
(Ⅱ)某同學在學習中發(fā)現(xiàn),以下兩個式子:
①tan13°+tan47°+
3
tan13°•tan47°;②tan(-20°)+tan80°+
3
tan(-20°)•tan80°的值與(Ⅰ)中計算的結(jié)果相同,請你根據(jù)這三個式子的結(jié)果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
sin(3π+α)•cos(π-α)•tan(
2
+α)
cos(
π
3
)•sin(
π
2
-α)•cos(-α)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(-2)+g(2)=3,f(2)+g(-2)=5,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若正數(shù)x,y滿足
1
y
+
3
x
=5,且3x+4y≥m恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O(0,0)和A(6,3)兩點,若點P在直線OA上,且
OP
=
1
2
PA
,又P是OB的中點,則點B的坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=3x+2的反函數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中an=an+1-an(n∈N*),對自然數(shù)k,規(guī)定{△kan}為數(shù)列{an}的k階差分數(shù)列,其中kan=k-1an+1-k-1an
(1)若△an=2,a1=1,則a2013=
 

(2)若a1=1,且2an-△an+1+an=-2n(n∈N*),則數(shù)列{an}的通項公式為
 

查看答案和解析>>

同步練習冊答案