【題目】某企業(yè)生產(chǎn)一種機(jī)器的固定成本(即固定投入)為 0.5 萬元,但每生產(chǎn)100臺時,又需可變成本(即另增加投入)0.25 萬元.市場對此商品的年需求量為 500臺,銷售的收入(單位:萬元)函數(shù)為 R(x)=5x-x2(0≤x≤5),其中 x 是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺).
(1)求利潤關(guān)于產(chǎn)量的函數(shù).
(2)年產(chǎn)量是多少時,企業(yè)所得的利潤最大?
【答案】(1);(2)475
【解析】
(1)由于商品年需求量為,故要對產(chǎn)量分成不大于和大于兩段來求利潤.當(dāng)時,用收入減掉成本,即為利潤的值.當(dāng)時,成本和的表達(dá)式一樣,但是銷售收入是固定的,由此求得解析式.(2)兩段函數(shù),二次函數(shù)部分用對稱軸求得其最大值,一次函數(shù)部分由于是遞減的,在左端點有最值的上限.比較兩段函數(shù)的最大值,來求得整個函數(shù)的最大值.
(1)當(dāng) 0≤x≤5 時,產(chǎn)品能全部售出,
則成本為 0.25x+0.5,收入為 5x-x2,
利潤 f(x)=5x-x2-0.25x-0.5
=-x2+4.75x-0.5.
當(dāng) x>5 時,只能銷售 500臺,
則成本為 0.25x+0.5,銷售收入為 5×5-×52=,
利潤 f(x)=-0.25x-0.5=-0.25x+12.
綜上,利潤函數(shù) f(x)=
(2)當(dāng) 0≤x≤5時,f(x)=- (x-4.75)2+10.781 25,
當(dāng) x=4.75∈[0,5]時,f(x)max=10.781 25(萬元);
當(dāng) x>5 時,函數(shù) f(x) 是遞減函數(shù),則 f(x)<12-0.25×5=10.75(萬元).
10.75<10.781 25.
綜上,當(dāng)年產(chǎn)量是 475臺時,利潤最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】最新公布的《道路交通安全法》和《道路交通安全法實施條例》對車速、安全車距以及影響駕駛?cè)朔磻?yīng)快慢等因素均有詳細(xì)規(guī)定,這些規(guī)定說到底主要與剎車距離有關(guān),剎車距離是指從駕駛員發(fā)現(xiàn)障礙到制動車輛,最后完全停止所行駛的距離,即:剎車距離=反應(yīng)距離+制動距離,反應(yīng)距離=反應(yīng)時間×速率,制動距離與速率的平方成正比,某反應(yīng)時間為的駕駛員以的速率行駛,遇緊急情況,汽車的剎車距離為.
()試將剎車距離表示為速率的函數(shù).
()若該駕駛員駕駛汽車在限速為的公路上行駛,遇緊急情況,汽車的剎車距離為,試問該車是否超速?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面, , , 是中點.
(1)證明:直線平面;
(2)點在棱上,且直線與底面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y∈R,則(3﹣4y﹣cosx)2+(4+3y+sinx)2的最小值為( )
A.4
B.5
C.16
D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(﹣1,1)上有零點,求a的取值范圍;
(3)若對任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,底面為直角梯形,,,,,,且平面平面.
(1)求證:;
(2)在線段上是否存在一點,使二面角的大小為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|.
(1)解不等式:f(x+1)+f(x+2)<4;
(2)已知a>2,求證:x∈R,f(ax)+af(x)>2恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面 平面, 與分別是棱長為1與2的正三角形, // ,四邊形為直角梯形, // , ,點為的重心, 為中點, .
(Ⅰ)當(dāng)時,求證: //平面;
(Ⅱ)若直線與所成角為,試求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個內(nèi)接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知且設(shè),綠地面積為.
(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域.
(2)當(dāng)為何值時,綠地面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com