【題目】四棱錐中,底面為直角梯形,,,,,,且平面平面.
(1)求證:;
(2)在線段上是否存在一點(diǎn),使二面角的大小為,若存在,求出的值;若不存在,請(qǐng)說明理由.
【答案】(1)證明見解析;(2) 存在,.
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用線面垂直的性質(zhì)定理推證;(2)依據(jù)題設(shè)建立空間直角坐標(biāo)系,運(yùn)用空間向量的數(shù)量積公式探求.
試題解析:
證明:(1)過作,交于,連接.
,,,四邊形是矩形,.,
,,.…………2分
,.又平面,平面,,
平面,……3分
平面,.………………………5分
(2)平面平面,平面平面,,
平面.
以為原點(diǎn),以,,為坐標(biāo)軸建立空間直角坐標(biāo)系,…………………7分
如圖所示:則,,假設(shè)存在點(diǎn)使得二面角的大小為,則,.
設(shè)平面的法向量為,則.
,令得.………9分
平面,
為平面的一個(gè)法向量.…………………10分
.……………………11分
解得..…………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)當(dāng)a≥1時(shí),求f(x)在[0,e](e為自然對(duì)數(shù)的底數(shù))上的最大值;
(2)對(duì)任意的正實(shí)數(shù)a,問:曲線y=f(x)上是否存在兩點(diǎn)P,Q,使得△POQ(O為坐標(biāo)原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)滿足,當(dāng)時(shí)總有 ,若,則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點(diǎn),焦距為,動(dòng)弦平行于軸,且.
(1)求橢圓的方程;
(2)過分別作直線交橢圓于和,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種機(jī)器的固定成本(即固定投入)為 0.5 萬元,但每生產(chǎn)100臺(tái)時(shí),又需可變成本(即另增加投入)0.25 萬元.市場(chǎng)對(duì)此商品的年需求量為 500臺(tái),銷售的收入(單位:萬元)函數(shù)為 R(x)=5x-x2(0≤x≤5),其中 x 是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺(tái)).
(1)求利潤關(guān)于產(chǎn)量的函數(shù).
(2)年產(chǎn)量是多少時(shí),企業(yè)所得的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)作圓的切線,切點(diǎn)分別為,直線與軸交于點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是滿足下列性質(zhì)的所有函數(shù)組成的集合:對(duì)任何(其中為函數(shù)的定義域),均有成立.
(1)已知函數(shù),,判斷與集合的關(guān)系,并說明理由;
(2)是否存在實(shí)數(shù),使得,屬于集合?若存在,求的取值范圍,若不存在,請(qǐng)說明理由;
(3)對(duì)于實(shí)數(shù)、 ,用表示集合中定義域?yàn)閰^(qū)間的函數(shù)的集合.
定義:已知是定義在上的函數(shù),如果存在常數(shù),對(duì)區(qū)間的任意劃分:,和式恒成立,則稱為上的“絕對(duì)差有界函數(shù)”,其中常數(shù)稱為的“絕對(duì)差上界”,的最小值稱為的“絕對(duì)差上確界”,符號(hào);求證:集合中的函數(shù)是“絕對(duì)差有界函數(shù)”,并求的“絕對(duì)差上確界”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上有兩個(gè)零點(diǎn),求的取值范圍;
(2)設(shè),當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com