【題目】已知直線L:kx-y+1+2k=0.
(1)求證:直線L過定點(diǎn);
(2)若直線L交x軸負(fù)半軸于點(diǎn)A,交y正半軸于點(diǎn)B,△AOB的面積為S,試求S的最小值并求出此時(shí)直線L的方程.
【答案】(1)定點(diǎn)(-2,1); (2) x-2y+4=0.
【解析】
試題分析:(1)由直線系方程: 恒過兩直線: 與的交點(diǎn)可知:只需將直線L的方程改寫成: 知直線L恒過直線與的交點(diǎn)(-2,1),從而問題得證;(2)先用k將點(diǎn)A和點(diǎn)B的坐標(biāo)表示出來,由直線L交x軸負(fù)半軸于點(diǎn)A,交y正半軸于點(diǎn)B知:k>0;然后再用含k的代數(shù)式將△AOB的面積為S表達(dá)出來,得到S是k的函數(shù),再利用基本不等式就可求得使S取得最小值對(duì)應(yīng)的k的值,從而就可寫出直線L的方程.
試題解析:(1)證明:由已知得: k(x+2)+(1-y)=0, 3分
令 x+2=0 , 1-y=0
得: x=-2 , y=1
∴無論k取何值,直線過定點(diǎn)(-2,1) 5分
(2)解:令y=0得:A點(diǎn)坐標(biāo)為
令x=0得:B點(diǎn)坐標(biāo)為(0,2k+1)(k>0), 7分
∴S△AOB= |2k+1|= (2k+1)
=≥ (4+4)=4 .10分
當(dāng)且僅當(dāng)4k=,即k=時(shí)取等號(hào).
即△AOB的面積的最小值為4,此時(shí)直線l的方程為x-y+1+1=0,
即 x-2y+4=0. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin(2x+ ),其中x∈R,下列結(jié)論中正確的是( )
A.f(x)是最小正周期為π的偶函數(shù)
B.f(x)的一條對(duì)稱軸是
C.f(x)的最大值為2
D.將函數(shù) 的圖象向左平移 個(gè)單位得到函數(shù)f(x)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是自然對(duì)數(shù)的底數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若,當(dāng)對(duì)任意恒成立時(shí), 的最大值為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次公里的自行車個(gè)人賽中,25名參賽選手的成績(jī)(單位:分鐘)的莖葉圖如圖所示:
(1)現(xiàn)將參賽選手按成績(jī)由好到差編為1~25號(hào),再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績(jī)?yōu)?5分鐘,若甲被選取,求被選取的其余4名選手的成績(jī)的平均數(shù);
(2)若從總體中選取一個(gè)樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績(jī))選取一個(gè)具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, , , , , , 分別在上, ,現(xiàn)將四邊形沿折起,使得平面平面.
(1)當(dāng),是否在折疊后的上存在一點(diǎn),使得平面?若存在,求出點(diǎn)位置,若不存在,說明理由;
(2)設(shè),問當(dāng)為何值時(shí),三棱錐的體積有最大值?并求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且b2+c2=a2+bc,求:
(1)2sinBcosC﹣sin(B﹣C)的值;
(2)若a=2,求△ABC周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)在數(shù)列中,對(duì)于任意,等式
成立,其中常數(shù).
(Ⅰ)求的值;
(Ⅱ)求證:數(shù)列為等比數(shù)列;
(Ⅲ)如果關(guān)于n的不等式的解集為
,求b和c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(Ⅰ)若直線l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若直線l與兩坐標(biāo)軸圍成的三角形面積等于2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com