已知
a
=(cosα,1,sinα),
b
=(sinα,1,cosα),且sinα≠cosα,則向量
a
+
b
a
-
b
的夾角是(  )
A、0°B、30°
C、60°D、90°
考點:平面向量數(shù)量積的運算
專題:高考數(shù)學(xué)專題,空間向量及應(yīng)用
分析:根據(jù)向量的數(shù)量積,得到(
a
+
b
)•(
a
-
b
)=0,繼而得到
a
+
b
a
-
b
,故向量
a
+
b
a
-
b
的夾角是90°
解答: 解:∵
a
=(cosα,1,sinα),
b
=(sinα,1,cosα),
∴(
a
+
b
)•(
a
-
b
)=
a
2
-
b
2
=cos2α+1+sin2α-(sin2α+1+cos2α)=0,
∵sinα≠cosα,
∴(
a
+
b
)⊥(
a
-
b

故向量
a
+
b
a
-
b
的夾角是90°,
故選:D
點評:本題主要考查了空間向量的坐標(biāo)運算和數(shù)量積的運算,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圖1是某高三學(xué)生進入高中三年來的數(shù)學(xué)考試成績莖葉圖,第1次到12次的考試成績依次記為A1,A2,…,A12.圖2是統(tǒng)計莖葉圖中成績在一定范圍內(nèi)考試次數(shù)的一個算法流程圖.那么算法流程圖輸出的結(jié)果是(  )
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中∠C=90°,AC=8,BC=6,以這個直角三角形的一條邊所在的直線為軸旋轉(zhuǎn)一周,求所得到的幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=1-
2
x+2
在點(-1,-1)處的切線方程為(  )
A、y=2x+1
B、y=2x-1
C、y=-2x-3
D、y=-2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+lnx,則它在點(1,1)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x-2
x-1
,
(1)判斷并證明f(x)在(1,+∞)的單調(diào)性;
(2)求函數(shù)在x∈[2,6]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=4x,若點P到焦點的距離為3,則點P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過定點M(-1,0)且斜率為k的直線與圓x2+4x+y2-5=0在第一象限內(nèi)的部分有交點,則k的取值范圍是( 。
A、0<k<
5
B、-
5
<k<0
C、0<k<
13
D、0<k<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F是橢圓E:
x2
a2
+
y2
b2
=1的右焦點,P是該橢圓上任一點,以PF為直徑作圓C1,以橢圓長軸為直徑作圓C2,則圓C1與圓C2的位置關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊答案