如圖,在四棱錐中,,,,分別是的中點(diǎn).

(1)求證: 底面;
(2)求證:平面平面;
(3)求三棱錐的體積.

(1)關(guān)鍵是找出,(2)關(guān)鍵是證明平面,
(3)

解析試題分析:(Ⅰ)證明:∵,,,
,同理可得:
底面 
(Ⅱ)證明:∵,的中點(diǎn),∴ABED為平行四邊形
 
又∵平面平面,
平面.
由于的中位線,同理得 
所以:平面平面
(Ⅲ)由(Ⅰ)知底面,
由已知的中點(diǎn),得到底面的距離為,
由已知,,,,
∴三角形BCE的面積為, 
∴三棱錐的體積為
考點(diǎn):直線與平面垂直的判定定理;直線與平面平行的判定定理;三棱錐的體積
點(diǎn)評(píng):在立體幾何中,?嫉亩ɡ硎牵褐本與平面垂直的判定定理、直線與平面平行的判定定理。當(dāng)然,此類題目也經(jīng)常要我們求出幾何體的體積和表面積。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)幾何體的三視圖如圖所示.已知正視圖是底邊長(zhǎng)為1的平行四邊形,側(cè)視圖是一個(gè)長(zhǎng)為,寬為1的矩形,俯視圖為兩個(gè)邊長(zhǎng)為1的正方形拼成的矩形.

(1)求該幾何體的體積V;
(2)求該幾何體的表面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角梯形中,,,,將沿折起,使平面平面,得到幾何體,如圖2所示.

(Ⅰ)求證:平面;
(Ⅱ)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是邊長(zhǎng)為2的正方形,⊥平面,,// 且.

(Ⅰ)求證:平面⊥平面;
(Ⅱ)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一個(gè)幾何體的三視圖如圖所示。(1)求此幾何體的表面積;(2)如果點(diǎn)在正視圖中所示位置:為所在線段中點(diǎn),為頂點(diǎn),求在幾何體表面上,從點(diǎn)到點(diǎn)的最短路徑的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,底面為等腰直角三角形,ACBC,點(diǎn)DAB的中點(diǎn),側(cè)面BB1C1C是正方形.

(1) 求證ACB1C;(2)求二面角B-CD-B1平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點(diǎn),又PB=BC,PA=AB.

(1)求證:PC⊥平面BDE;
(2)若點(diǎn)Q是線段PA上任一點(diǎn),判斷BD、DQ的位置關(guān)系,并證明結(jié)論;
(3)若AB=2,求三棱錐B﹣CED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在棱長(zhǎng)為1的正方體中.

(1)求異面直線所成的角;
(2)求證平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)一個(gè)圓錐,它的底面直徑和高均為.
(1)求這個(gè)圓錐的表面積和體積.
(2)在該圓錐內(nèi)作一內(nèi)接圓柱,當(dāng)圓柱的底面半徑和高分別為多少時(shí),它的側(cè)面積最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案