【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛足球運動是否與性別有關,某體育臺隨機抽取100名觀眾進行統(tǒng)計,得到如下列聯(lián)表.

(1)將列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為喜愛足球運動與性別有關?

(2)在不喜愛足球運動的觀眾中,按性別分別用分層抽樣的方式抽取6人,再從這6人中隨機抽取2人參加一臺訪談節(jié)目,求這2人至少有一位男性的概率.

【答案】(1)答案見解析;(2).

【解析】

(1)讀懂題意,補充列聯(lián)表,代入公式求出的值,對照表格,得出結論;

(2)根據(jù)古典概型的特點,采用列舉法求出概率.

(1)補充列聯(lián)表如下:

由列聯(lián)表知

故可以在犯錯誤的概率不超過0.001的前提下認為喜愛足球運動與性別有關.

(2)由分層抽樣知,從不喜愛足球運動的觀眾中抽取6人,其中男性有人,女性有.

記男性觀眾分別為,女性觀眾分別為,隨機抽取2人,基本事件有

15

記至少有一位男性觀眾為事件,則事件包含9個基本事件

由古典概型,知

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】按下列要求分配6本不同的書,各有多少種不同的分配方式?

(1)分成三份,1份1本,1份2本,1份3本;

(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;

(3)平均分成三份,每份2本;

(4)平均分配給甲、乙、丙三人,每人2本;

(5)分成三份,1份4本,另外兩份每份1本;

(6)甲、乙、丙三人中,一人得4本,另外兩人每人得1本;

(7)甲得1本,乙得1本,丙得4本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦點分別為 、 ,點P在橢圓C上,滿足|PF1|=7|PF2|,tan∠F1PF2=4
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點A(1,0),試探究是否存在直線l:y=kx+m與橢圓C交于D、E兩點,且使得|AD|=|AE|?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生的課外閱讀時間情況,某學校隨機抽取了50人進行統(tǒng)計分析,把這50人每天閱讀的時間(單位:分鐘)繪制成頻數(shù)分布表,如下表所示:

閱讀時間

[0,20)

[20,40)

[40,60)

[60,80)

[80,100)

[100,120]

人數(shù)

8

10

12

11

7

2

若把每天閱讀時間在60分鐘以上(含60分鐘)的同學稱為閱讀達人,根據(jù)統(tǒng)計結果中男女生閱讀達人的數(shù)據(jù),制作出如圖所示的等高條形圖.

(1)根據(jù)抽樣結果估計該校學生的每天平均閱讀時間(同一組數(shù)據(jù)用該區(qū)間的中點值作為代表);

(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷是否有99%的把握認為閱讀達人跟性別有關?

男生

女生

總計

閱讀達人

非閱讀達人

總計

附:參考公式,其中n=a+b+c+d.

臨界值表:

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】王老師的班上有四個體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運動會上,他們四人要組成一個米接力隊,王老師要安排他們四個人的出場順序,以下是他們四人的對話:

甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;

丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙,我就不跑第一棒;

王老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場順序中,跑第三棒的人是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC內角A,B,C的對邊,且 csinA=acosC.
(I)求C的值;
(Ⅱ)若c=2a,b=2 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的中心在坐標原點,左、右焦點F1、F2分別在x軸上,離心率為 ,在其上有一動點A,A到點F1距離的最小值是1,過A、F1作一個平行四邊形,頂點A、B、C、D都在橢圓E上,如圖所示.
(Ⅰ)求橢圓E的方程;
(Ⅱ)判斷ABCD能否為菱形,并說明理由.
(Ⅲ)當ABCD的面積取到最大值時,判斷ABCD的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側面積.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析】(I)的中點為,連接,.利用等腰三角形的性質和矩形的性質可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質求得的值,進而求得面積.

試題解析】

證明:(Ⅰ)取的中點為,連接,,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面

平面,∴.

,所以.

(Ⅱ)由面,,

平面,所以為棱錐的高,

,知

,

.

由(Ⅰ)知,,∴.

.

,可知平面,∴

因此.

,,

的中點,連結,則,

.

所以棱錐的側面積為.

型】解答
束】
20

【題目】已知圓經過橢圓 的兩個焦點和兩個頂點,點 , 是橢圓上的兩點,它們在軸兩側,且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況隨機抽取了100名觀眾進行調查,其中女性有55名.如圖是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖.將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷,已知體育迷中有10名女性.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為體育迷與性別有關?

(2)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱為超級體育迷,已知超級體育迷中有2名女性,若從超級體育迷中任意選取2人,求至少有1名女性觀眾的概率.

查看答案和解析>>

同步練習冊答案