8.下列說法中正確的有:③④⑤.
①已知直線m,n與平面α,β,若m∥α,n⊥β,α⊥β,則m∥n;
②用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n+1)(n∈N*),從n=k到n=k+1時(shí),等式左邊需乘的代數(shù)式是(2k+1)(2k+2);
③對(duì)命題“正三角形與其內(nèi)切圓切于三邊中點(diǎn)”可類比猜想:正四面體與其內(nèi)切球切于各面中心;
④在判斷兩個(gè)變量y與x是否相關(guān)時(shí),選擇了3個(gè)不同的模型,它們的相關(guān)指數(shù)R2分別為:模型1為0.98,模型2為0.80,模型3為0.50.其中擬合效果最好的是模型1;
⑤在空間直角坐標(biāo)系中,點(diǎn)A(1,2,1)關(guān)于y軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(-1,2,-1).

分析 ①根據(jù)面面垂直和線面垂直的性質(zhì)進(jìn)行判斷.
②根據(jù)數(shù)學(xué)歸納法的定義進(jìn)行判斷.
③根據(jù)類比推理的定義進(jìn)行判斷.
④根據(jù)相關(guān)指數(shù)R2的性質(zhì)進(jìn)行判斷.
⑤根據(jù)空間點(diǎn)的對(duì)稱性進(jìn)行判斷.

解答 解:①已知直線m,n與平面α,β,若n⊥β,α⊥β,則n∥α或n?平面α,若m∥α,則m∥n或m,n相交或m,n是異面直線;故①錯(cuò)誤,
②用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n+1)(n∈N*),從n=k到n=k+1時(shí),
當(dāng)n=k+1時(shí),(k+1+1)(k+1+2)…(k+1+k+1)=(k+2)(k+3)…(2k+2),則等式左邊需乘的代數(shù)式是(2k+1)(2k+2)•$\frac{1}{k+1}$,故②錯(cuò)誤;
③對(duì)命題“正三角形與其內(nèi)切圓切于三邊中點(diǎn)”可類比猜想:正四面體與其內(nèi)切球切于各面中心;根據(jù)類比推理的定義,故③正確,
④在判斷兩個(gè)變量y與x是否相關(guān)時(shí),選擇了3個(gè)不同的模型,它們的相關(guān)指數(shù)R2分別為:模型1為0.98,模型2為0.80,模型3為0.50.其中擬合效果最好的是模型1;
正確,根據(jù)R2越大,則擬合效果最好,故④正確,
⑤在空間直角坐標(biāo)系中,點(diǎn)A(1,2,1)關(guān)于y軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(-1,2,-1),正確,關(guān)于y軸對(duì)稱在y不變,其余坐標(biāo)相反,故⑤正確,
故答案為:③④⑤

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及的知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)A(0,1),且離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l:y=k(x-1)+1與橢圓E交于不同兩點(diǎn)M,N,線段MN的中點(diǎn)為P,O為坐標(biāo)原點(diǎn),且直線OP的斜率存在,求直線l與直線PO的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC的三內(nèi)角A,B,C的對(duì)邊分別是a,b,c,則“a2+b2<c2”是“△ABC為鈍角三角形”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(0,2)關(guān)于直線y=-x的對(duì)稱點(diǎn)在橢圓M上,且|F1F2|=2$\sqrt{3}$
(1)求橢圓M的方程;
(2)如圖,橢圓M的上、下頂點(diǎn)分別為A,B過點(diǎn)P的直線l與橢圓M相交于兩個(gè)不同的點(diǎn)C,D(C在線段PD之間).
(。┣$\overrightarrow{OC}$•$\overrightarrow{OD}$的取值范圍;
(ⅱ)當(dāng)AD與BC相交于點(diǎn)Q時(shí),試問:點(diǎn)Q的縱坐標(biāo)是否是定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)P為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的焦點(diǎn),|PF1|+|PF2|=4,離心率為$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l:y=kx+m(m≠0)與橢圓交于P、Q兩點(diǎn),試問參數(shù)k和m滿足什么條件時(shí),直線OP,PQ,OQ的斜率依次成等比數(shù)列;
(Ⅲ)求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在四面體ABCD中,點(diǎn)B1,C1,D1分別在棱AB,AC,AD上,且平面B1C1D1∥平面BCD,A1為△BCD內(nèi)一點(diǎn),記三棱錐A1-B1C1D1的體積為V,設(shè)$\frac{{A{D_1}}}{AD}=x$,對(duì)于函數(shù)V=F(x),則下列選項(xiàng)正確的是( 。
A.函數(shù)F(x)在$({\frac{1}{2},1})$上是減函數(shù)
B.函數(shù)F(x)的圖象關(guān)于直線$x=\frac{1}{2}$對(duì)稱
C.當(dāng)$x=\frac{2}{3}$時(shí),函數(shù)F(x)取得最大值
D.存在x0,使得$F({x_0})>\frac{7}{27}{V_{A-BCD}}$(其中VA-BCD為四面體ABCD的體積)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex-e-x(x∈R,e=2.71828…)
(Ⅰ)求證:函數(shù)f(x)為奇函數(shù);
(Ⅱ)t為實(shí)數(shù),且f(x-t)+f(x2-t2)≥0對(duì)一切實(shí)數(shù)x都成立,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.大樓的頂上有一座電視塔,高20米,在地面某處測得塔頂?shù)难鼋菫?5°,塔底的仰角為30°,求此大樓的高度(保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+a2n=n,a2n+1=an+1,則S49=325.

查看答案和解析>>

同步練習(xí)冊(cè)答案