【題目】已知數(shù)列{an}滿足a1=1,a2=4,且對任意m,n,p,q∈N* , 若m+n=p+q,則有am+an=ap+aq . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{ }的前n項(xiàng)和為Sn , 求證: ≤Sn

【答案】(Ⅰ)解:令m=1,p=n﹣1,q=2,可得:an+a1=an1+a2 , 即an﹣an1=3.(n≥2). ∴數(shù)列{an}是等差數(shù)列,公差為3.
∴an=1+3(n﹣1)=3n﹣2.
(Ⅱ)證明: = =
∴Sn= + +…+
=
另一方面:數(shù)列 單調(diào)遞增,∴Sn≥S1=
≤Sn
【解析】(I)令m=1,p=n﹣1,q=2,可得:an+a1=an1+a2 , 即an﹣an1=3.(n≥2).利用等差數(shù)列的通項(xiàng)公式即可得出.(II) = = .利用裂項(xiàng)求和方法與數(shù)列的單調(diào)性即可證明.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2=9點(diǎn)A(-5,0)直線l:x-2y=0.

(1)求與圓C相切,且與直線l垂直的直線方程;

(2)在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A),滿足:對于圓C上任一點(diǎn)P都有一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知點(diǎn)A(-1,-2),B(1,3),P為x軸上的一點(diǎn),求|PA|+|PB|的最小值;

(2)已知點(diǎn)A(2,2),B(3,4),P為x軸上一點(diǎn),求||PB|-|PA||的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在路邊安裝路燈,燈柱的高為米,路寬為23米,燈桿與燈柱角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直,請你建立適當(dāng)直角坐標(biāo)系,解決以下問題:

(1)當(dāng)

(2)且燈罩軸線正好通過道路路面的中線時(shí),求燈桿的長為多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3ax2﹣9a2x+a3 . 若a> ,且當(dāng)x∈[1,4a]時(shí),|f′(x)|≤12a恒成立,則a的取值范圍為(
A.( , ]
B.( ,1]
C.[﹣ ,1]
D.[0, ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y2=2px(p>0)的焦點(diǎn)為F,拋物線上存在一點(diǎn)G到焦點(diǎn)的距離為3,且點(diǎn)G在圓C:x2+y2=9上. (Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2 =1(m>n>0)的一個(gè)焦點(diǎn)與拋物線C1的焦點(diǎn)重合,且離心率為 .直線l:y=kx﹣4交橢圓C2于A、B兩個(gè)不同的點(diǎn),若原點(diǎn)O在以線段AB為直徑的圓的外部,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C上任意一點(diǎn)到的距離與到點(diǎn) 的距離之比均為.

(1)求曲線C的方程;

(2)設(shè)點(diǎn),過點(diǎn)作兩條相異直線分別與曲線C相交于兩點(diǎn),且直線和直線的傾斜角互補(bǔ),求線段的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)根據(jù)2002﹣2014年期間學(xué)生的興趣愛好,分別創(chuàng)建了“攝影”、“棋類”、“國學(xué)”三個(gè)社團(tuán),據(jù)資料統(tǒng)計(jì)新生通過考核遠(yuǎn)拔進(jìn)入這三個(gè)社團(tuán)成功與否相互獨(dú)立,2015年某新生入學(xué),假設(shè)他通過考核選拔進(jìn)入該校的“攝影”、“棋類”、“國學(xué)”三個(gè)社團(tuán)的概率依次為m, ,n,已知三個(gè)社團(tuán)他都能進(jìn)入的概率為 ,至少進(jìn)入一個(gè)社團(tuán)的概率為 ,且m>n.
(1)求m與n的值;
(2)該校根據(jù)三個(gè)社團(tuán)活動(dòng)安排情況,對進(jìn)入“攝影”社的同學(xué)增加校本選修字分1分,對進(jìn)入“棋類”社的同學(xué)增加校本選修學(xué)分2分,對進(jìn)入“國學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團(tuán)方面獲得校本選修課字分分?jǐn)?shù)的分布列及期望.

查看答案和解析>>

同步練習(xí)冊答案