7.在數(shù)列{an}中,a1=2,an+1=4an-3n+1,則{an}的通項公式an=4n-1+n.

分析 由an+1=4an-3n+1,變形為:an+1-(n+1)=4(an-n),利用等比數(shù)列的通項公式即可得出.

解答 解:由an+1=4an-3n+1,變形為:an+1-(n+1)=4(an-n),
∴數(shù)列{an-n}是等比數(shù)列,首項為1,公比為4.
∴an-n=4n-1,即an=4n-1+n,
故答案為:4n-1+n.

點評 本題考查了等比數(shù)列的通項公式、數(shù)列的遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,分別記錄了3月1日至3月5日的每天晝夜溫差(℃)與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)(顆)如表:
日   期3月1日3月2日3月3日3月4日3月5日
溫差x(°C)101113128
發(fā)芽數(shù)y(顆)2325302616
(Ⅰ)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率;
(Ⅱ)請根據(jù)3月2日至3月4日的數(shù)據(jù),求發(fā)芽數(shù)y關(guān)于晝夜溫差x的線性回歸方程$\hat y$=$\hat b$x+$\hat a$.
參考公式:回歸直線的方程是$\hat y$=$\hat b$x+$\hat a$,其中$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列每對集合的交集:
(1)A={x|x2+2x-3=0},B={x|x2+4x+3=0};
(2)C={1,3,5,7},D={2,4,6,8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}是等比數(shù)列,a1=1,a4=8,數(shù)列{bn}是等差數(shù)列,且b2=a2,b4=a3,求an,bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=2x-2-x,若不等式f(x2-ax+a)+f(3)>0對任意實數(shù)x恒成立,則實數(shù)a的取值范圍是(-2,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知{an}是等差數(shù)列,2a5=a3+a7是否成立?2a5=a1+a9呢?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x<0}\\{-{x}^{2}+2x+a,x>0}\end{array}\right.$是奇函數(shù),則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)在(-∞,+∞)上為減函數(shù),則( 。
A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2-1)<f(a)D.f(a2+1)<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\sqrt{1-{x}^{2}}$的值域是(  )
A.(2,3)B.[0,1]C.[0,+∞)D.(-∞,1]

查看答案和解析>>

同步練習(xí)冊答案