【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足(p﹣1)Sn=p2﹣an(p>0,p≠1),且a3= .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,數(shù)列{bnbn+2}的前n項(xiàng)和為Tn , 若對于任意的正整數(shù)n,都有Tn<m2﹣m+ 成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:依題意,(p﹣1)S1=p2﹣a1(p>0,p≠1),
∴a1=p,
∴(p﹣1)(p+a2)=p2﹣a2,解得:a2=1,
∴(p﹣1)(1+p+a3)=p2﹣a3,
又∵a3= ,
∴(p﹣1)(1+p+ )=p2﹣ ,解得:p=3,
∴2Sn=9﹣an,
∴2an+1=an﹣an+1,即an+1= an,
又∵a1=p=3,
∴數(shù)列{an}是首項(xiàng)為3,公比為 的等比數(shù)列,
∴an= = ;
(2)解:由(1)可知bn= = = ,
∴bnbn+2= = ( ﹣ ),
∴Tn= (1﹣ + ﹣ +…+ ﹣ )
= (1+ ﹣ ﹣ )
= ﹣ ( + ),
顯然Tn隨著n的增大而增大,且Tn< ,
則對于任意的正整數(shù)n都有Tn<m2﹣m+ 成立等價(jià)于對于任意的正整數(shù)n都有 ≤m2﹣m+ 成立,
化簡得:m(m﹣1)≥0,
解得:m≤或m≥1.
【解析】(1)通過在(p﹣1)Sn=p2﹣an(p>0,p≠1)中令n=1可知a1=p,令n=2可知a2=1,令n=3并結(jié)合a3= 可知p=3,進(jìn)而可知數(shù)列{an}是首項(xiàng)為3,公比為 的等比數(shù)列,計(jì)算即得結(jié)論;(2)通過(1)可知bn= ,裂項(xiàng)、并項(xiàng)相加可知Tn= ﹣ ( + ),利用Tn< ,問題轉(zhuǎn)化為解不等式 ≤m2﹣m+ ,計(jì)算即得結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:在△ABC中,∠C>∠B是sinC>sinB的充分必要條件;命題q:a>b是ac2>bc2的充分不必要條件( )
A.p真q假
B.p假q真
C.“p或q”為假
D.“p且q”為真
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC﹣A1B1C1中,已知D,E分別為BC,B1C1的中點(diǎn),點(diǎn)F在棱CC1上,且EF⊥C1D.求證:
(1)直線A1E∥平面ADC1;
(2)直線EF⊥平面ADC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,表示三條不同的直線,,,表示三個(gè)不同的平面,給出下列四個(gè)命題:
①若,則;
②若,是在內(nèi)的射影, ,則;
③若是平面的一條斜線,點(diǎn),為過點(diǎn)的一條動(dòng)直線,則可能有且;
④若,則.
其中正確的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一三棱柱ABC﹣A1B1C1各棱長相等,B1在底面ABC上的射影是AC的中點(diǎn),則異面直線AA1與BC所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F1(﹣1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)M到點(diǎn)F2的距離是 ,線段MF1的中垂線交線段MF2于點(diǎn)P. (Ⅰ)當(dāng)點(diǎn)M變化時(shí),求動(dòng)點(diǎn)P的軌跡G的方程;
(Ⅱ)過點(diǎn)F2且不與x軸重合的直線L與曲線G相交于A,B兩點(diǎn),過點(diǎn)B作x軸的平行線與直線x=2相交于點(diǎn)C,則直線AC是否恒過定點(diǎn),若是請求出該定點(diǎn),若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為3ρ2cos2θ+4ρ2sin2θ=12. (Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)已知與直線l平行的直線l'過點(diǎn)M(1,0),且與曲線C交于A,B兩點(diǎn),試求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)為奇函數(shù),且x0是y=f(x)﹣ex的一個(gè)零點(diǎn),則下列函數(shù)中,﹣x0一定是其零點(diǎn)的函數(shù)是( )
A.y=f(﹣x)e﹣x﹣1
B.y=f(x)ex+1
C.y=f(x)ex﹣1
D.y=f(﹣x)ex+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com