分析 (Ⅰ)根據(jù)有界函數(shù)的定義分別求出f(x),g(x)的范圍,從而判斷是否有界即可;
(Ⅱ)問題轉(zhuǎn)化為-2x-$\frac{4}{{2}^{x}}$≤a≤$\frac{2}{{2}^{x}}$-2x在(-∞,0)上恒成立,令t=2x,g(t)=-t-$\frac{4}{t}$,h(t)=-t+$\frac{2}{t}$,根據(jù)函數(shù)的單調(diào)性求出t的范圍即可;
(Ⅲ)求出a≤$\frac{1-y}{1+y}$≤2a,根據(jù)$\frac{1-2a}{1+2a}$≤y≤$\frac{1-a}{1+a}$,得到T(a)=$\frac{1-a}{1+a}$,從而求出T(a)的范圍即可.
解答 解:(Ⅰ)f(x)=$\sqrt{x+1}$-$\sqrt{x}$=$\frac{1}{\sqrt{x+1}+\sqrt{x}}$,
∵x≥0,∴$\sqrt{x+1}$+$\sqrt{x}$≥1,
∴0<f(x)≤1,函數(shù)f(x)是有界函數(shù),
令t=3x,則t>0,
∴y=t2-3t≥-1即g(x)∈[-1,+∞),
∴g(x)不是有界函數(shù);
(Ⅱ)∵函數(shù)f(x)=1+a•2x+4x,(x∈(-∞,0))是以-3為下界,3為上界的有界函數(shù),
∴-3≤1+a•2x+4x≤3在(-∞,0)上恒成立,
即-2x-$\frac{4}{{2}^{x}}$≤a≤$\frac{2}{{2}^{x}}$-2x在(-∞,0)上恒成立,
令t=2x,g(t)=-t-$\frac{4}{t}$,h(t)=-t+$\frac{2}{t}$,
∵x<0,∴0<t<1,
設(shè)t1,t2∈(0,1),且t1<t2,
則g(t1)-g(t2)=$\frac{{(t}_{2}{-t}_{1}){{(t}_{1}t}_{2}-4)}{{{t}_{1}t}_{2}}$<0,
∴g(t)在(0,1)遞增,
故g(t)<g(1)=-5,∴a≥-5,h(t1)-h(t2)>0,
∴h(t)在(0,1)上是減函數(shù),
故h(t)>h(1)=1,
∴a≤1,
綜上,實數(shù)a的范圍是[-5,1];
(Ⅲ)由y=$\frac{1-a{•2}^{x}}{1+a{•2}^{x}}$,得:a•2x=$\frac{1-y}{1+y}$,
∵x∈[0,1],a>0,
∴a≤a•2x≤2a,
即a≤$\frac{1-y}{1+y}$≤2a,
∴$\frac{1-2a}{1+2a}$≤y≤$\frac{1-a}{1+a}$,
故T(a)=$\frac{1-a}{1+a}$=-1+$\frac{2}{a+1}$,
∵a>0,
∴T(a)的范圍是(-1,1).
點評 本題考查了新定義問題,考查有界函數(shù)有界函數(shù)的單調(diào)性問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥α,b∥α,則a∥b | B. | 若a∥b,b∥α,則a∥α | C. | 若a⊥α,b⊥α,則a∥b | D. | 若a⊥α,b⊥a,則b⊥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com