直線y=kx(k≠0)是曲線y=xex的切線,則k=
 
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義即可得到結(jié)論.
解答: 解:函數(shù)的導(dǎo)數(shù)為y′=ex(x+1),設(shè)切點坐標(biāo)為(a,aea),則切線方程為y-aea=ea(a+1)(x-a),
即y=ea(a+1)x-a2ea,
∵直線y=kx(k≠0)是曲線y=xex的切線,
∴k=ea(a+1)且a2ea=0,
解得a=0,則k=1,
故答案為:1.
點評:本題主要考查導(dǎo)數(shù)的切線的求解和應(yīng)用,根據(jù)導(dǎo)數(shù)的幾何意義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式
(1)20122x-7≥20124x-1
(2)log0.2(x+1)≥log0.2(1-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+ϕ)(其中A>0,ω>0,0<ϕ<π)在一個周期內(nèi)的圖象如下
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB是圓O的直徑,C,D是圓上不同兩點,且CD∩AB=H,AC=AD,PA⊥圓O所在平面.
(Ⅰ)求證:PB⊥CD;
(Ⅱ)若PB與圓O所在平面所成角為
π
4
,且∠CAD=
3
,求二面角C-PB-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x、y∈R,
x
1-i
-
y
1-2i
=
5
1-3i
,則xy=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若a>2,則a2>4”的逆否命題可表述為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
log2xx≥1
f(x+2)x<1
,則f(8)=
 
;f(-3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π-α)=2cos(2π-α),則
sin(π+α)+5cos(-α)
3cos(π-α)-cos(
π
2
+α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,x),
b
=(x2,2),且
a
b
,則實數(shù)x的值為
 

查看答案和解析>>

同步練習(xí)冊答案