1.已知數(shù)列{an}的通項公式為an=log2(3+n2)-2,那么log23是這個數(shù)列的第3項.

分析 令log23=log2(3+n2)-2,利用對數(shù)的運算性質(zhì)即可得出.

解答 解:令log23=log2(3+n2)-2,
化為log23=$lo{g}_{2}\frac{3+{n}^{2}}{4}$,
∴$3=\frac{3+{n}^{2}}{4}$,解得n=3.
∴l(xiāng)og23是這個數(shù)列的第3項.
故答案為:3.

點評 本題考查了數(shù)列的通項公式、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從10名女生和5名男生中選出6名組成課外學(xué)習(xí)小組,如果按性別比例分層抽樣,則組成此課外學(xué)習(xí)小組的不同方案有2100 種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)化簡:tan210°cos150°;
(2)已知:tanα=2,求$\frac{{{{sin}^2}α+sinαcosα}}{{{{cos}^2}α-{{sin}^2}α}}$;
(3)$\frac{{sin({{{180}^0}+α})cos({-α})}}{{tan({-α})sin({-α+\frac{π}{2}})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,acosC+$\sqrt{3}$asinC-b-c=0,a=2,S△ABC=$\sqrt{3}$,則b+c=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.lg100$\sqrt{2}-lg10\sqrt{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow$=(2sin(x+$\frac{π}{6}$),1),f(x)=$\overrightarrow{a}$•$\overrightarrow$,
(1)求f(x)的解析式以及最小正周期;
(2)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=sin(2x+\frac{π}{6})+\frac{1}{2}$.
(Ⅰ)試用“五點法”畫出函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{11π}{12}]$的簡圖;
(Ⅱ)指出該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅲ)若$x∈[-\frac{π}{6},\frac{π}{3}]$時,函數(shù)g(x)=f(x)+m的最小值為2,試求出函數(shù)g(x)的最大值并指出x取何值時,函數(shù)g(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=alnx-x+1(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0在(0,+∞)上恒成立,求所有實數(shù)a的值;
(3)證明:$\frac{ln2}{3}+\frac{ln3}{4}+\frac{ln4}{5}+…+\frac{lnn}{n+1}<\frac{n(n-1)}{4}$(n∈N,n>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知y=loga(ax2-(3-a)x+2)在[0,1]上是增函數(shù),則a的取值范圍是($\frac{1}{2}$,1)∪[3,+∞).

查看答案和解析>>

同步練習(xí)冊答案