分析 已知等式利用正弦定理化簡,將sinB=sin(A+C)代入,利用兩角和與差的正弦函數(shù)公式化簡,整理后根據(jù)sinC不為0,再利用萬能公式化簡求出tan$\frac{A}{2}$的值,即可確定出A的度數(shù),結(jié)合三角形面積公式可求bc,利用余弦定理即可得解.
解答 解:已知等式利用正弦定理化簡得:sinAcosC+$\sqrt{3}$sinAsinC-sinB-sinC=0,
∴sinAcosC+$\sqrt{3}$sinAsinC-sin(A+C)-sinC=0,即sinAcosC+$\sqrt{3}$sinAsinC-sinAcosC-cosAsinC-sinC=0,
∴$\sqrt{3}$sinAsinC-cosAsinC-sinC=0,
∵sinC≠0,
∴$\sqrt{3}$sinA=cosA+1,即$\frac{sinA}{1+cosA}$=$\frac{\sqrt{3}}{3}$,
∴tan$\frac{A}{2}$=$\frac{sinA}{1+cosA}$=$\frac{\sqrt{3}}{3}$,
∴$\frac{A}{2}$=$\frac{π}{6}$,即A=$\frac{π}{3}$.
∴S△ABC=$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc,解得:bc=4,
∴由余弦定理可得:a2=b2+c2-2bccosA,即4=(b+c)2-2bc-bc=(b+c)2-12,解得:b+c=4.
故答案為:4.
點(diǎn)評 此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 48 | B. | 49 | C. | 50 | D. | 51 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{e}$ | B. | $\frac{1}{2}$e | C. | e | D. | 2e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com