20.已知復(fù)數(shù)z滿足$\frac{1-i}{z-2}$=1+i,則在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根據(jù)復(fù)數(shù)的運(yùn)算法則,得到z對應(yīng)的復(fù)數(shù),寫出點(diǎn)的坐標(biāo),看出所在的位置

解答 解:$\frac{1-i}{z-2}$=1+i,
∴z-2=$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=-i,
∴z=2-i,
∴z的對應(yīng)點(diǎn)為(2,-1),
故選:D

點(diǎn)評 考查復(fù)數(shù)的運(yùn)算和幾何意義,解題的關(guān)鍵是寫出對應(yīng)的點(diǎn)的坐標(biāo),有點(diǎn)的坐標(biāo)以后,點(diǎn)的位置就顯而易見.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線y=kx-k與拋物線y2=4x交于A,B兩點(diǎn),若|AB|=4,則弦AB的中點(diǎn)到y(tǒng)軸的距離為( 。
A.$\frac{3}{4}$B.1C.2D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.用斜二測畫法畫出水平放置的邊長為1的正方形的直觀圖,則直觀圖的面積是( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a>0,設(shè)P:函數(shù)f(x)=$\frac{1}{3}$x3+ax2+ax在(-∞,+∞)上單調(diào)遞增,Q:log2(2a-a2+$\frac{1}{4}$)>0,若命題P∧Q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,某隧道的截面圖由矩形ABCD和拋物線型拱頂DEC組成(E為拱頂DEC的最高點(diǎn)),以AB所在直線為x軸,以AB的中點(diǎn)為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系xOy,已知拱頂DEC的方程為y=-$\frac{1}{4}$x2+6(-4≤x≤4).
(1)求tan∠AEB的值;
(2)現(xiàn)欲在拱頂上某點(diǎn)P處安裝一個交通信息采集裝置,為了獲得最佳采集效果,需要點(diǎn)P對隧道底AB的張角∠APB最大,求此時點(diǎn)P到AB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a∈R,復(fù)數(shù)z=(1-a)+2ai對應(yīng)的點(diǎn)在同一條直線l上,則直線l的方程為y=-2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,以O(shè)為圓心的圓與直線x-$\sqrt{3}$y-4=0相切.
(Ⅰ)求圓O的方程;
(Ⅱ)圓O與x軸相交于A,B兩點(diǎn),圓O內(nèi)的動點(diǎn)P使|PA|,|PO|,|PB|成等比數(shù)列,求P點(diǎn)的軌跡方程,并指出軌跡的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=2sin(4x+$\frac{π}{3}$)+1的最小正周期是( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個相等的實根,且f′(x)=2x+2.
(1)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(2)若直線x=-t(0<t<1)把y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

同步練習(xí)冊答案