已知函數(shù)f(x)對(duì)一切x,y都有f(ab)=bf(a)+af(b)
(1)求f(0);
(2)求證:f(x)是奇函數(shù);
(3)若F(x)=af(x)+bx5+cx3+2x2+dx+3,已知F(-5)=7,求F(5)
【答案】分析:(1)用賦值法f(-1)
(2)用賦值法求f(1),f(-1),再對(duì)b賦值-1,就可得到關(guān)于f(-x)與f(x)的關(guān)系式.
(3)利用f(x)是奇函數(shù)可得F(x)-3-2x2也為奇函數(shù),再利用奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱即可求F(5).
解答:解:(1)令a=b=0⇒f(0)=0f(0)+0f(0)=0⇒f(0)=0
(2)證明:令a=b=1⇒f(1)=0,令a=b=-1⇒f(1)=-2f(-1)⇒f(-1)=0
令b=-1⇒f(-a)=-f(a)+af(-1)=-f(a)⇒f(-x)=-f(x)
所以f(x)是奇函數(shù);
(3)∵f(x)是奇函數(shù),
∴F(x)-3-2x2=af(x)+bx5+cx3+dx也為奇函數(shù),
∴F(-5)-3-2×(-5)2=-[F(5)-3-2×52]又因?yàn)镕(-5)=7,
∴F(5)=-F(-5)+106=99,
即:F(5)=99.
點(diǎn)評(píng):本題考查抽象函數(shù)的奇偶性及特殊值點(diǎn),抽象函數(shù)是相對(duì)于給出具體解析式的函數(shù)來說的,它雖然沒有具體的表達(dá)式,但是有一定的對(duì)應(yīng)法則,滿足一定的性質(zhì),這種對(duì)應(yīng)法則及函數(shù)的相應(yīng)的性質(zhì)是解決問題的關(guān)鍵.抽象函數(shù)的抽象性賦予它豐富的內(nèi)涵和多變的思維價(jià)值,可以考查類比猜測,合情推理的探究能力和創(chuàng)新精神.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)已知函數(shù)f(x)對(duì)定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•綿陽一模)已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當(dāng)x,y∈(-1,1)時(shí),恒有f(x)-f(y)=f(
x-y
1-xy
).又?jǐn)?shù)列{an}滿足,a1=
1
2
,an+1=
2an
1+an2

(I )證明:f(x)在(-1,1)上是奇函數(shù)
( II )求f(an)的表達(dá)式;
(III)設(shè)bn=
1
2log2|f(an+1)
,Tn為數(shù)列{bn}的前n項(xiàng)和,若T2n+1-Tn
m
15
(其中m∈N*)對(duì)N∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濱州一模)已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)設(shè)△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中c=2
3
,f(C)=0,若向量
m
=(sinB,2)與向量
n
=(1,-sinA)垂直,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武清區(qū)一模)已知函數(shù)f(x)對(duì)任意的x,y∈R,均有f(x+y)=f(x)f(y),且當(dāng)x>0時(shí),0<f(x)<1,設(shè)M={y|f(y)f(1-2a)>f(1)},N={y|f(ax2+2x-y+3)=1,x∈R},若M∩N=∅,則實(shí)數(shù)a的取值范圍是
1
2
≤a≤1
1
2
≤a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江一模)已知函數(shù)f(x)對(duì)任意的x∈R有f(x)+f(-x)=0,且當(dāng)x>0時(shí),f(x)=ln(x+1),則函數(shù)f(x)的大致圖象為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案