【題目】某大學(xué)為調(diào)研學(xué)生在 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學(xué)生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.

整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組: , , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:

(Ⅰ)在抽樣的100人中,求對餐廳評分低于30的人數(shù);

(Ⅱ)從對餐廳評分在范圍內(nèi)的人中隨機選出2人,求2人中恰有1人評分在范圍內(nèi)的概率;

(Ⅲ)如果從 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

【答案】(I)人;(II);(III)詳見解析.

【解析】試題分析:(Ⅰ)計算前三個小矩形面積和即可得結(jié)果;(Ⅱ)列舉出所有從這人中隨機選出人的所有情況共 種,符合條件的有 種,有古典概型概率公式可得結(jié)果;(III)比較得分低于 分的比例即可得結(jié)果.

試題解析:(Ⅰ)由餐廳分數(shù)的頻率分布直方圖,得

餐廳評分低于的頻率為,

所以,對餐廳評分低于的人數(shù)為.

(Ⅱ)對餐廳評分在范圍內(nèi)的有人,設(shè)為;

餐廳評分在范圍內(nèi)的有人,設(shè)為.

從這人中隨機選出人的選法為:

, , , , , 種.

其中,恰有人評分在范圍內(nèi)的選法為: , , .共6種.

人中恰有人評分在范圍內(nèi)的概率為.

(Ⅲ)從兩個餐廳得分低于分的數(shù)所占的比例來看:

由(Ⅰ)得,抽樣的人中, 餐廳評分低于的人數(shù)為

所以, 餐廳得分低于分的人數(shù)所占的比例為.

餐廳評分低于的人數(shù)為,

所以, 餐廳得分低于分的人數(shù)所占的比例為.

所以會選擇餐廳用餐.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三共有800名學(xué)生,為了解學(xué)生3月月考生物測試情況,根據(jù)男女學(xué)生人數(shù)差異較大,從中隨機抽取了200名學(xué)生,記錄他們的分數(shù),并整理得如圖頻率分布直方圖.

(1)若成績不低于60分的為及格,成績不低于80分的為優(yōu)秀,試估計總體中合格的有多少人?優(yōu)秀的有多少人?

(2)已知樣本中有一半的女生分數(shù)不小于80,且樣本中不低于80分的男女生人數(shù)之比2:3,試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4—4:坐標系與參數(shù)方程

在直角坐標系xOy中,圓C的參數(shù)方程為參數(shù)).以O為極點,x軸的非負半軸為極軸建立極坐標系.

1)求圓C的極坐標方程;

2)直線的極坐標方程是,射線與圓C的交點為O、P,與直線的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x+ 的值域為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學(xué)校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當作概率).

(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學(xué)的角度,你認為派哪位學(xué)生參加比較合適?

(2)假設(shè)數(shù)字的取值是隨機的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),( ),若對任意,總存在,使得成立,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=2x , g(x)=x2
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù).

1)求曲線處的切線方程;

2)關(guān)于的不等式上恒成立,求實數(shù)的值;

3)關(guān)于的方程有兩個實根,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)或, 時,證明: .

查看答案和解析>>

同步練習(xí)冊答案