【題目】已知圓C的圓心在直線3x+y﹣1=0上,且x軸,y軸被圓C截得的弦長分別為2 ,4 ,若圓心C位于第四象限
(1)求圓C的方程;
(2)設(shè)x軸被圓C截得的弦AB的中心為N,動(dòng)點(diǎn)P在圓C內(nèi)且P的坐標(biāo)滿足關(guān)系式(x﹣1)2﹣y2= ,求 的取值范圍.

【答案】
(1)解:設(shè)圓C的方程為:(x﹣a)2+(y﹣b)2=r2

根據(jù)題意,有

①﹣②得b2=a2+3,…④

由③④得4a2﹣3a﹣1=0,∵a>0,解得a=1,b=1﹣3a=﹣2,r2=9,

∴圓C的方程為:(x﹣1)2+(y+2)2=9,


(2)解:在圓C的方程:(x﹣1)2+(y+2)2=9中令y=0,

得A(1﹣ ,0),B(1+ ),∴N(1,0).

∵動(dòng)點(diǎn)P(x,y)在圓C內(nèi),∴(x﹣1)2+(y+2)2<9…①

將①代入(x﹣1)2﹣y2= 得﹣ ,0

=(1﹣ ﹣x,﹣y)(1+ ﹣x,﹣y)=(x﹣1)2+y2﹣5…②

將(x﹣1)2﹣y2= 代入②得 =2y2


【解析】(1)設(shè)圓C的方程為:(x﹣a)2+(y﹣b)2=r2 , 根據(jù)題意,有
由①②③得a=1,b=1﹣3a=﹣2,r2=9,即可得圓的方程;(2)在圓C的方程:(x﹣1)2+(y+2)2=9中令y=0,得A(1﹣ ,0),B(1+ ),N(1,0).
將x﹣1)2+(y+2)2<9.(x﹣1)2﹣y2= 代入 =(1﹣ ﹣x,﹣y)(1+ ﹣x,﹣y)=(x﹣1)2+y2﹣5即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時(shí), 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動(dòng)點(diǎn),求點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

>300

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15


(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為ω)的關(guān)系式為: S= ,試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于200元且不超過600元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)? 附:

P(K2≥k0

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

k2=

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三某班的一次測試成績的頻率分布表以及頻率分布直方圖中的部分?jǐn)?shù)據(jù)如下,請根據(jù)此解答如下問題:

(1)求班級(jí)的總?cè)藬?shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補(bǔ)充完整;
(3)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100)之間的概率.

分組

頻數(shù)

頻率

[50,60)

0.08

[60,70)

7

[70,80)

10

[80,90)

[90,100)

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)影院的經(jīng)營經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時(shí),票可全售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),需符合的基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放一場電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價(jià),用y(元)表示該影院放映一場的凈收入(除去成本費(fèi)用支出后的收入) 問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價(jià)定為多少時(shí),放映一場的凈收人最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅲ)若,求證不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的機(jī)坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點(diǎn)且與直線平行的直線兩點(diǎn),求點(diǎn)兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別是雙曲線 =1(a>0,b>0)的左,右焦點(diǎn),點(diǎn)F1關(guān)于漸近線的對(duì)稱點(diǎn)恰好在以F2為圓心,|OF2|(O為坐標(biāo)原點(diǎn))為半徑的圓上,則該雙曲線的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在其定義區(qū)間[a,b]上滿足①f(x)>0;②f′(x)<0;③對(duì)任意的x1 , x2∈[a,b],式子 恒成立.記S1= f(x)dx,S2= (b﹣a),S3=f(b)(b﹣a),則S1 , S2 , S3的大小關(guān)系為 . (按由小到大的順序)

查看答案和解析>>

同步練習(xí)冊答案