【題目】某校高三某班的一次測試成績的頻率分布表以及頻率分布直方圖中的部分?jǐn)?shù)據(jù)如下,請根據(jù)此解答如下問題:

(1)求班級的總?cè)藬?shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補(bǔ)充完整;
(3)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100)之間的概率.

分組

頻數(shù)

頻率

[50,60)

0.08

[60,70)

7

[70,80)

10

[80,90)

[90,100)

2

【答案】
(1)解:分?jǐn)?shù)在[90,100)的頻率為0.008×10=0.08,頻數(shù)為2,

∴全班人數(shù)為 =25


(2)解:[50,60)頻數(shù)為2;[60,70)頻率為 =0.28;[70,80)頻率為 =0.4;[80,90)頻數(shù)為4,頻率為0.16,頻率分布表

分組

頻數(shù)

頻率

[50,60)

2

0.08

[60,70)

7

0.28

[70,80)

10

0.40

[80,90)

4

0.16

[90,100)

2

0.08

頻率分布直方圖


(3)解:將[80,90)之間的頻數(shù)為4,[90,100)之間的頻數(shù)為2,

在[80,100)之間的試卷中任取兩份的基本事件為 =15個(gè),

其中,至少有一個(gè)在[90,100)之間的基本事件有9個(gè),

故至少有一份分?jǐn)?shù)在[90,100)之間的概率是0.6.


【解析】(1)分?jǐn)?shù)在[90,100)的頻率為0.008×10=0.08,頻數(shù)為2,即可求得本次考試的總?cè)藬?shù);(2)[50,60)頻數(shù)為2;[60,70)頻率為 =0.28;[70,80)頻率為 =0.4;[80,90)頻數(shù)為4,頻率為0.16,可得頻率分布表及頻率分布直方圖的空余位置;(3)用列舉法列舉出所有的基本事件,找出符合題意得基本事件個(gè)數(shù),利用古典概型概率計(jì)算公式即可求出結(jié)果.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布表和頻率分布直方圖的相關(guān)知識可以得到問題的答案,需要掌握第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點(diǎn),將數(shù)據(jù)分組;第四步,列頻率分布表;頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖示. (Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A= ,B={y|y=log2x,4<x<16},
(1)求圖中陰影部分表示的集合C;
(2)若非空集合D={x|4﹣a<x<a},且D(A∪B),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3sin(ωx+ 的部分圖象如圖所示,A,B兩點(diǎn)之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關(guān)于y軸對稱,則t的最小值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;

②設(shè)有一個(gè)回歸方程,變量增加一個(gè)單位時(shí),平均增加個(gè)單位;

③線性回歸方程必過);

④在一個(gè)列聯(lián)表中,由計(jì)算得,則有以上的把握認(rèn)為這兩個(gè)變量間有關(guān)系.

其中錯誤的個(gè)數(shù)是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在直線3x+y﹣1=0上,且x軸,y軸被圓C截得的弦長分別為2 ,4 ,若圓心C位于第四象限
(1)求圓C的方程;
(2)設(shè)x軸被圓C截得的弦AB的中心為N,動點(diǎn)P在圓C內(nèi)且P的坐標(biāo)滿足關(guān)系式(x﹣1)2﹣y2= ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 經(jīng)過點(diǎn)P(2,1),且離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)MN滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點(diǎn),如果經(jīng)過定點(diǎn)請求出定點(diǎn)的坐標(biāo),如果不經(jīng)過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是矩形, , 分別是, 中點(diǎn),

)求證: 平面

)求證: 平面

)求證:平面平面

查看答案和解析>>

同步練習(xí)冊答案