若變量x,y滿足約束條件
x≥1
y≥x
3x+2y≤5
 則z=2x+y的最大值為
3
3
分析:先根據(jù)約束條件畫出可行域,利用z的幾何意義求最值,只需求出直線z=2x+y過可行域內(nèi)的點(diǎn)A時,z最大,從而得到z值即可.
解答:解:由約束條件
x≥1
y≥x
3x+2y≤5
,畫出可行域如圖:是一個點(diǎn)A,
因?yàn)閦=2x+y,
將最大值轉(zhuǎn)化為y軸上的截距,
當(dāng)直線z=2x+y經(jīng)過的交點(diǎn)A(1,1)時,z最大,
最大值為:3,
故答案為:3
點(diǎn)評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
3≤2x+y≤9
6≤x-y≤9
則z=x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺一模)若變量x,y滿足約束條件
x≥1
y≥x
3x+2y≤15
則w=log3(2x+y)的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y 滿足約束條件
x+y≥0
x-y≥0
3x+y-4≤0
,則4x+y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺三模)已知向量
a
=(x-z,1),
b
=(2,y+z)
,且
a
b
,若變量x,y滿足約束條件
x≥-1
y≥x
3x+2y≤5
則z的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宣城模擬)若變量x,y滿足約束條件
2≤x+y≤4
1≤x-y≤2
,則z=2x+4y的最小值為(  )

查看答案和解析>>

同步練習(xí)冊答案