16.如圖,三棱柱ABC-A1B1C1的各棱長均為2,且側(cè)棱與底面垂直,其正(主)視圖如圖所示,則此三棱柱側(cè)(左)視圖的面積為( 。
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

分析 由三視圖和題意可知三棱柱是正三棱柱,結(jié)合正視圖,俯視圖,不難得到側(cè)視圖,然后求出面積.

解答 解:由三視圖和題意可知三棱柱是正三棱柱,底面邊長為2,側(cè)棱長2,
結(jié)合正視圖,俯視圖,得到側(cè)視圖是矩形,長為2,寬為$\sqrt{3}$,
面積為:2×$\sqrt{3}$=2$\sqrt{3}$.
故選:C.

點評 本題考查由三視圖求側(cè)視圖的面積,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知命題p:關(guān)于x的不等式x3-3x2-9x+2≥m對任意x∈[-2,2]恒成立;命題q:函數(shù)y=$\frac{|{x}^{2}-1|}{x-1}$的圖象與函數(shù)y=mx-2的圖象恰有兩個交點;若p∨q為真,則實數(shù)m的取值范圍是(-∞,-20]∪(0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和Sn=n2+pn,且a2,a5,a10成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{4{n}^{2}+24n+40}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線y2=4x的焦點為點F,過焦點F的直線交該拋物線于A、B兩點,O為坐標原點,若△AOB的面積為$\sqrt{6}$,則|AB|=( 。
A.6B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3x+3(x≤-1)}\\{f(x-1)+1(x>-1)}\end{array}\right.$,方程f(x)=x+1的解從小到大排成一個數(shù)列{an},該數(shù)列的前n項和為Sn,則$\frac{2{S}_{n+3}+10}{n}$的最小值為( 。
A.$\frac{28}{3}$B.$\frac{19}{2}$C.6D.2$\sqrt{10}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x-4y+4≤0}\\{x+y≤1}\\{x≥-3}\end{array}}\right.$,則x-y的最大值是( 。
A.-7B.$-\frac{13}{4}$C.-1D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P的底面ABCD的射影,N是PC的中點.
(Ⅰ)求證:平面MPB⊥平面PBC;
(Ⅱ)若MP=MC,求直線BN與平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)是定義在[-3,0)∪(0,3]上的奇函數(shù),當x∈(0,3]時,f(x)的圖象如圖所示,那么滿足不等式f(x)≥2x-1 的x的取值范圍是[-3,-2]∪[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在底面是菱形的四棱柱ABCD-A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,點E在A1D上,且E為A1D的中點
(Ⅰ)求證:AA1⊥平面ABCD;
(Ⅱ)求三棱錐D-ACE的體積VD-ACE

查看答案和解析>>

同步練習(xí)冊答案