分析 求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系解f′(x)≥0恒成立即可.
解答 解:函數(shù)的導(dǎo)數(shù)f′(x)=acosx-sinx,
∵函數(shù)f(x)=asinx+cosx在區(qū)間$(\frac{π}{6},\frac{π}{4})$上單調(diào)遞增,
∴f′(x)≥0在區(qū)間$(\frac{π}{6},\frac{π}{4})$上恒成立,
即f′(x)=acosx-sinx≥0,
即acosx≥sinx,
即a≥$\frac{sinx}{cosx}$=tanx
∵x∈$(\frac{π}{6},\frac{π}{4})$,
∴tan$\frac{π}{6}$<tanx<tan$\frac{π}{4}$,
即$\frac{\sqrt{3}}{3}$<tanx<1,
則a≥1,
故答案為:[1,+∞)
點評 本題主要考查函數(shù)單調(diào)性的應(yīng)用,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)法是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0” | |
B. | “p∧q為真命題”是“p∨q為真命題”的必要不充分條件 | |
C. | “a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件 | |
D. | 命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{1}{4}$) | B. | [$\frac{1}{4}$,$\frac{1}{3}$] | C. | (0,$\frac{1}{3}$] | D. | (0,$\frac{1}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com