分析 (1)由平行線成比例,結(jié)合橢圓的定義,可得P的軌跡方程;
(2)討論直線斜率不存在和存在,設(shè)出直線方程,代入橢圓方程,運(yùn)用韋達(dá)定理,化簡整理,即可得到定值.
解答 解:(1)∵F2P∥MF1,
∴$\frac{P{F}_{2}}{M{F}_{1}}$=$\frac{PN}{{F}_{1}N}$,可得$\frac{P{F}_{2}}{4}$=$\frac{4-P{F}_{1}}{4}$,即有PF1+PF2=4>F1F2=2,
∴點(diǎn)P的軌跡是以F1,F(xiàn)2為焦點(diǎn),長軸長2a的橢圓,
即有a=2,c=1,b=$\sqrt{3}$,其軌跡方程為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)(Ⅰ)若lAB的斜率存在時,設(shè)lAB為:y=k(x-1),
聯(lián)立$\frac{x^2}{4}+\frac{y^2}{3}=1$,可得:(3+4k2)x2-8k2x+4k2-12=0,
不妨設(shè)A(x1,y1),B(x2,y2)(x2<1<x1),則$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{8{k^2}}}{{3+4{k^2}}}\\{x_1}{x_2}=\frac{{4{k^2}-12}}{{3+4{k^2}}}\end{array}\right.$,
∴$\frac{1}{{|{F_2}A|}}+\frac{1}{{|{F_2}B|}}=\frac{1}{{\sqrt{1+{k^2}}|{{x_1}-1}|}}+\frac{1}{{\sqrt{1+{k^2}}|{{x_2}-1}|}}=\frac{1}{{\sqrt{1+{k^2}}}}({\frac{1}{{{x_1}-1}}+\frac{1}{{1-{x_2}}}})$
=$\frac{1}{{\sqrt{1+{k^2}}}}({\frac{{1-{x_2}+{x_1}-1}}{{({{x_1}-1})({1-{x_2}})}}})=\frac{1}{{\sqrt{1+{k^2}}}}({\frac{{{x_1}-{x_2}}}{{({{x_1}+{x_2}})-{x_1}•{x_2}-1}}})$
=$\frac{1}{{\sqrt{1+{k^2}}}}({\frac{{\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}•{x_2}}}}{{({{x_1}+{x_2}})-{x_1}•{x_2}-1}}})=\frac{1}{{\sqrt{1+{k^2}}}}({\frac{{\sqrt{{{({\frac{{8{k^2}}}{{3+4{k^2}}}})}^2}-4×\frac{{4{k^2}-12}}{{3+4{k^2}}}}}}{{\frac{{8{k^2}}}{{3+4{k^2}}}-\frac{{4{k^2}-12}}{{3+4{k^2}}}-1}}})$
=$\frac{1}{{\sqrt{1+{k^2}}}}({\frac{{\frac{{12\sqrt{1+{k^2}}}}{{3+4{k^2}}}}}{{\frac{9}{{3+4{k^2}}}}}})=\frac{12}{9}=\frac{4}{3}$;
(Ⅱ)若lAB的斜率不存在時,此時lAB:x=1,
則$A({1,\frac{3}{2}}),B({1,-\frac{3}{2}})$,
此時$\frac{1}{{|{F_2}A|}}+\frac{1}{{|{F_2}B|}}=\frac{2}{3}+\frac{2}{3}=\frac{4}{3}$.
綜上可知,變化直線l,則$\frac{1}{{|{F_2}A|}}+\frac{1}{{|{F_2}B|}}$為定值$\frac{4}{3}$.
點(diǎn)評 本題考查軌跡的方程的求法,注意運(yùn)用定義,考查直線和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,考查運(yùn)算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {a|a=kπ+$\frac{π}{2}$,k∈Z} | B. | {a|a=kπ,k∈Z} | ||
C. | {a|a=2kπ+$\frac{π}{2}$,k∈Z} | D. | {a|a=kπ或a=kπ+$\frac{π}{2}$,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com