【題目】某蛋糕店制作并銷售一款蛋糕,制作一個蛋糕成本3元,且以8元的價格出售,若當(dāng)天賣不完,剩下的則無償捐獻(xiàn)給飼料加工廠。根據(jù)以往100天的資料統(tǒng)計(jì),得到如下需求量表。該蛋糕店一天制作了這款蛋糕個,以(單位:個,,)表示當(dāng)天的市場需求量,(單位:元)表示當(dāng)天出售這款蛋糕獲得的利潤.
需求量/個 | |||||
天數(shù) | 15 | 25 | 30 | 20 | 10 |
(1)當(dāng)時,若時獲得的利潤為,時獲得的利潤為,試比較和的大;
(2)當(dāng)時,根據(jù)上表,從利潤不少于570元的天數(shù)中,按需求量分層抽樣抽取6天.
(i)求此時利潤關(guān)于市場需求量的函數(shù)解析式,并求這6天中利潤為650元的天數(shù);
(ii)再從這6天中抽取3天做進(jìn)一步分析,設(shè)這3天中利潤為650元的天數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,交圓于,兩點(diǎn),過點(diǎn)作的平行線交于點(diǎn).
(1)求的值;
(2)設(shè)點(diǎn)的軌跡為曲線,直線與曲線相交于,兩點(diǎn),與直線相交于點(diǎn),試問在橢圓上是否存在一定點(diǎn),使得,,成等差數(shù)列(其中,,分別指直線,,的斜率).若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(卷號)2040818101747712
(題號)2050752239689728
(題文)
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線C的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)設(shè)直線與曲線交于兩點(diǎn),點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時, 取得極值,求的值;
(Ⅱ)當(dāng)函數(shù)有兩個極值點(diǎn),且時,總有 成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=2cos(ωx)(ω>0)滿足:f()=f(),且在區(qū)間(,)內(nèi)有最大值但沒有最小值,給出下列四個命題:P1:在[0,2π]上單調(diào)遞減;P2:的最小正周期是4π;P3:的圖象關(guān)于直線x對稱;P4:的圖象關(guān)于點(diǎn)(,0)對稱.其中的真命題是( )
A.P1,P2B.P2,P4C.P1,P3D.P3,P4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線PC⊥平面ABC,E,F分別是PA,PC的中點(diǎn).
(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個交點(diǎn)為D,且點(diǎn)Q滿足.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織高一、高二年級學(xué)生進(jìn)行了“紀(jì)念建國70周年”的知識競賽.從這兩個年級各隨機(jī)抽取了40名學(xué)生,對其成績進(jìn)行分析,得到了高一年級成績的頻率分布直方圖和高二年級成績的頻數(shù)分布表.
(Ⅰ)若成績不低于80分為“達(dá)標(biāo)”,估計(jì)高一年級知識競賽的達(dá)標(biāo)率;
(Ⅱ)在抽取的學(xué)生中,從成績?yōu)閇95,100]的學(xué)生中隨機(jī)選取2名學(xué)生,代表學(xué)校外出參加比賽,求這2名學(xué)生來自于同一年級的概率;
(Ⅲ)記高一、高二兩個年級知識競賽的平均分分別為,試估計(jì)的大小關(guān)系.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為,(a為參數(shù))。以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為,將C2逆時針旋轉(zhuǎn)以后得到曲線C3.
(1)寫出C1與C3的極坐標(biāo)方程;
(2)設(shè)C2與C3分別交曲線C1于A、B和C、D四點(diǎn),求四邊形ACBD面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)為,點(diǎn)在橢圓上,且點(diǎn)關(guān)于原點(diǎn)對稱,直線的斜率的乘積為.
(1)求橢圓的方程;
(2)已知直線經(jīng)過點(diǎn),且與橢圓交于不同的兩點(diǎn),若,判斷直線的斜率是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com