如圖,在△ABC中,DE∥BC,EF∥CD.且AB=2,AD=,求AF的長.
1
設AF=x,則由,解得x=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,PA切圓O于點A,割線PBC交圓O于點B、C,∠APC的角平分線分別與AB、AC相交于點D、E,求證:

(1)AD=AE;
(2)AD2=DB·EC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.求證:

(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,E是圓O內(nèi)兩弦AB和CD的交點,過AD延長線上一點F作圓O的切線FG,G為切點,已知EF=FG.

求證:(1);(2)EF//CB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于圓OD為弦BC上一點,過D作直線DP // AC,交AB于點E,交圓OA點處的切線于點P.求證:△PAE∽△BDE

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,銳角三角形ABC的內(nèi)心為I,過點A作直線BI的垂線,垂足為H,點E為圓I與邊CA的切點.

(1)求證A,I,H,E四點共圓;
(2)若∠C=50°,求∠IEH的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,圓O1與圓O2內(nèi)切于點A,其半徑分別為r1與r2(r1>r2),圓O1的弦AB交圓O2于點C(O1不在AB上).

求證:AB∶AC為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知PA與⊙O相切,A為切點,PBC為割線,D為⊙O上一點,AD、BC相交于點E.

(1)若AD=AC,求證:AP∥CD;
(2)若F為CE上一點使得∠EDF=∠P,已知EF=1,EB=2,PB=4,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知A、B、C三點的坐標分別為(0,1)、(-1,0)、(1,0),P是線段AC上一點,BP交AO于點D,設三角形ADP的面積為S,點P的坐標為(x,y),求S關于x的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案