16.已知全集為R,M={x|x(x-3)<0},N={x|x<1或x≥3},則正確的為( 。
A.M⊆NB.N⊆MC.RN⊆MD.M⊆∁RN

分析 化簡集合M,即可得出結(jié)論.

解答 解:M={x|x(x-3)<0}={x|0<x<3},N={x|x<1或x≥3},
∴∁RN⊆M,
故選C.

點評 本題考查集合的關(guān)系,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$的部分圖象如圖所示.
(1)求f(x)的最小正周期及解析式;
(2)求函數(shù)f(x)在區(qū)間$x∈[{0,\frac{π}{2}}]$上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,$AC=\sqrt{6}$,BC=2,B=60°,則C=75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$=(2,3m+2),$\overrightarrow$=(m,-1).若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m等于( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}中,a1=-1,Sn為數(shù)列{an}的前n項和,且對任意的n≥2,都有${S_n}^2-{a_n}{S_n}=2{a_n}$,則{an}的通項公式an=$\left\{\begin{array}{l}{-1,n=1}\\{\frac{2}{n(n+1)},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=ex+x-2,g(x)=lnx+x2-3,若f(a)=0,g(b)=0,則( 。
A.g(a)>f(b)B.g(a)<f(b)C.g(a)≤f(b)D.g(a)≥f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l1:x-2y+5=0與直線l2:2x+my-6=0.
(1)若兩直線相互平行,求實數(shù)m的值;
(2)若兩直線相互垂直,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在等腰直角三角形ABC中,AB=AC=4,點P是邊上異于A,B的一點.光線從點P出發(fā),經(jīng)BC,CA反射后又回到點P(如圖).若光線QR經(jīng)過△ABC的重心,則AP等于( 。
A.2B.1C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,△ABC為正三角形,AA1=AB=6,點D為AC的中點.
(1)求證:平面BC1D⊥平面ACC1A1;
(2)求三棱錐C-BC1D的體積.

查看答案和解析>>

同步練習(xí)冊答案