精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,曲線C的參數方程為為參數),以原點O為極點,x軸正半軸為極軸建立極坐標系,直線的極坐標方程為,且直線與曲線C有兩個不同的交點.

1)求實數a的取值范圍;

2)已知M為曲線C上一點,且曲線C在點M處的切線與直線垂直,求點M的直角坐標.

【答案】1;(2

【解析】

1)分別求出曲線C與直線的直角坐標方程,由點到直線的距離公式即可得解;

2)設點,由題意可得,結合同角三角函數的平方關系求得后即可得解.

1)消參可得曲線C的普通方程為,可得曲線C是圓心為,半徑為的圓,

直線的直角坐標方程為

由直線與圓C有兩個交點知,解得

2)設圓C的圓心為,由圓C的參數方程可設點,由題知,∴,

,解得,或

故點M的直角坐標為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統計,結果如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

(1)4月份任取一天,估計西安市在該天不下雨的概率;

(2)西安市某學校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中,,點P的中點,于點D,現將沿翻折至,使得平面平面.

1)若Q為線段的中點,求證:平面;

2)在線段上是否存在點E,使得二面角大小為.若存在,請求出點E所在位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為

1)寫出曲線C1C2的直角坐標方程;

2)已知P為曲線C2上的動點,過點P作曲線C1的切線,切點為A,求|PA|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了判斷英語詞匯量與閱讀水平是否相互獨立,某語言培訓機構隨機抽取了100位英語學習者進行調查,經過計算的觀測值為7,根據這一數據分析,下列說法正確的是(

附:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

A.99%以上的把握認為英語詞匯量與閱讀水平無關

B.99.5%以上的把握認為英語詞匯量與閱讀水平有關

C.99.9%以上的把握認為英語詞匯量與閱讀水平有關

D.在犯錯誤的概率不超過1%的前提下,可以認為英語詞匯量與閱讀水平有關

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知為橢圓的上頂點,P為橢圓E上異于上、下頂點的一個動點.當點P的橫坐標為時,

1)求橢圓E的標準方程;

2)設Mx軸的正半軸上的一個動點.

①若點P在第一象限內,且以AP為直徑的圓恰好與x軸相切于點M,求AP的長.

②若,是否存在點N,滿足,且AN的中點恰好在橢圓E上?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天干地支紀年法,源于中國.中國自古便有十天干與十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如說第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”… …依此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”“乙亥”,之后地支回到“子”重新開始,即“丙子”… …依此類推.1911年中國爆發(fā)推翻清朝專制帝制、建立共和政體的全國性革命,這一年是辛亥年,史稱“辛亥革命”.1949新中國成立,請推算新中國成立的年份為( )

A.己丑年B.己酉年

C.丙寅年D.甲寅年

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一飲料店制作了一款新飲料,為了進行合理定價先進行試銷售,其單價(元)與銷量(杯)的相關數據如下表:

單價(元)

8.5

9

9.5

10

10.5

銷量(杯)

120

110

90

70

60

1)已知銷量與單價具有線性相關關系,求關于的線性回歸方程;

2)若該款新飲料每杯的成本為8元,試銷售結束后,請利用(1)所求的線性回歸方程確定單價定為多少元時,銷售的利潤最大?(結果四舍五入保留到整數)

附:線性回歸方程中斜率和截距最小二乗法估計計算公式:,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.(其中為自然對數的底數)

1)當時,是否存在唯一的的值,使得?并說明理由;

2)若存在,使得對任意的恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案