【題目】已知數(shù)列{an}為等差數(shù)列,a7a210,且a1a6,a21依次成等比數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn,數(shù)列{bn}的前n項(xiàng)和為Sn,若Sn,求n的值.

【答案】1an2n+3210

【解析】

1)設(shè)等差數(shù)列的公差為d,運(yùn)用等差數(shù)列的通項(xiàng)公式和等比數(shù)列中項(xiàng)性質(zhì),解方程可得首項(xiàng)和公差,即可得到所求通項(xiàng)公式;

2)求得bn),運(yùn)用裂項(xiàng)相消求和可得Sn,解方程可得n

解:(1)設(shè)數(shù)列{an}為公差為d的等差數(shù)列,

a7a210,即5d10,即d2

a1a6,a21依次成等比數(shù)列,可得

a62a1a21,即(a1+102a1a1+40),

解得a15,

an5+2n1)=2n+3

2bn),

即有前n項(xiàng)和為Sn

,

Sn,可得5n4n+10

解得n10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點(diǎn),點(diǎn)P在底面的射影落在線段AG上.

(Ⅰ)求證:平面PBE⊥平面APG;

(Ⅱ)已知AB=2,BC=,側(cè)棱PA與底面ABCDE所成角為45°,S△PBE=,點(diǎn)M在側(cè)棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①離心率,②橢圓過點(diǎn),③面積的最大值為,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面(橫線處)問題中,解決下面兩個(gè)問題.

設(shè)橢圓的左、右焦點(diǎn)分別為,過且斜率為的直線交橢圓于兩點(diǎn),已知橢圓的短軸長(zhǎng)為,________.

1)求橢圓的方程;

2)若線段的中垂線與軸交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,,過垂直于長(zhǎng)軸的直線交橢圓于、兩點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線與橢圓交于不同的兩點(diǎn)、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若,求證:無零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程的一個(gè)根為

1)求復(fù)數(shù)的模;

2)若復(fù)數(shù)滿足,且為純虛數(shù),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)一動(dòng)點(diǎn))到點(diǎn)的距離與點(diǎn)軸的距離的差等于1,

1)求動(dòng)點(diǎn)的軌跡的方程;

2)過點(diǎn)的直線與軌跡相交于不同于坐標(biāo)原點(diǎn)的兩點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某不透明紙箱中共有4個(gè)小球,其中1個(gè)白球,3個(gè)紅球,它們除顏色外均相同.

(Ⅰ)一次從紙箱中摸出兩個(gè)小球,求恰好摸出2個(gè)紅球的概率;

(Ⅱ)每次從紙箱中摸出一個(gè)小球,記錄顏色后放回紙箱,這樣摸取4次,記得到紅球的次數(shù)為,求的分布列;

(Ⅲ)每次從紙箱中摸出一個(gè)小球,記錄顏色后放回紙箱,這樣摸取100次,得到幾次紅球的概率最大?只需寫出結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】梯形中,,矩形所在平面與平面垂直,且.

1)求證:平面平面;

2)若P為線段上一點(diǎn),且異面直線所成角為45°,求平面與平面所成銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案