5.函數(shù)f(x)=tan(ωx-$\frac{π}{4}$)(ω>0)與函數(shù)g(x)=sin($\frac{π}{4}$-2x)的最小正周期相同則ω=(  )
A.±1B.1C.±2D.2

分析 分別求出兩個函數(shù)的周期,利用周期相同得到函數(shù)關(guān)系,求出ω.

解答 解:g(x)的周期為$\frac{2π}{2}$=π
函數(shù)f(x)=tan(ωx-$\frac{π}{4}$)(ω>0)的周期是$\frac{π}{ω}$,
由題意可知$\frac{π}{ω}$=π,∴ω=1.
故選B.

點(diǎn)評 本題考查三角函數(shù)的周期的求法,注意周期公式(分母是|ω|)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)的定義域?yàn)镽,對任意實(shí)數(shù)m、n,均有f(m+n)=f(m)+f(n)-1,且f($\frac{1}{2}$)=2,當(dāng)x>-$\frac{1}{2}$時有f(x)>0
(1)求f(-$\frac{1}{2}$)的值;
(2)判斷f(x)在R上的單調(diào)性,并加以證明;
(3)解關(guān)于x的不等式:1+f(x2+1)≤f(1)+f(2|x|)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線l:x-y+1=0是圓(x+3)2+(y+a)2=25的一條對稱軸(即圓關(guān)于直線對稱)則a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2016)2f(x+2016)-4f(-2)>0的解集為( 。
A.(-∞,-2016)B.(-∞,-2018)C.(-2018,0)D.(-2016,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)P(2,c)處有相同的切線(P為切點(diǎn)),求a,b的值;
(2)令h(x)=f(x)+g(x),若函數(shù)h(x)的單調(diào)遞減區(qū)間為[-$\frac{a}{2}$,-$\frac{\sqrt}{3}$],求函數(shù)h(x)在區(qū)間(-∞,-1]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若集合A={x|-1≤x≤1},B={x|0<x<2},則A∩B=( 。
A.{x|-1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若f(x)為偶函數(shù),且在(-∞,0)單調(diào)遞增,則下列關(guān)系式中成立的是( 。
A.f(-$\frac{3}{2}$)<f(-1)<f(2)B.f(-1)<f($\frac{3}{2}$)<f(-1)<f(2)C.f(2)<f(-1)<f(-$\frac{3}{2}$)D.f(-2)<f($\frac{3}{2}$)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義在(0,+∞)上的函數(shù)f(x),對于任意的實(shí)數(shù)x,y,都有f(xy)=f(x)+f(y),則f(1)的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在三棱錐O-ABC中,M,N分別是OA,BC的中點(diǎn),G是三角形ABC的重心,則$\overrightarrow{OG}$=( 。
A.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{4}$$\overrightarrow{OC}$B.$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$C.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$D.$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$

查看答案和解析>>

同步練習(xí)冊答案