某小型企業(yè)最初在年初投資10000元生產(chǎn)某種產(chǎn)品,在今后10年內(nèi)估計資金年平均增長率為50%,問第5年末該企業(yè)的資金增長速度大約是每年多少萬元?
考點:等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:由題意構(gòu)造等比數(shù)列,由等比數(shù)列的通項公式可得.
解答: 解:用數(shù)列{an}表示第n年末的資金,
由題意可得數(shù)列{an}為等比數(shù)列,
由題意可得a1=10000(1+50%),
∴第5年末為a5=10000(1+50%)5,
點評:本題考查等比數(shù)列的通項公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a≤
1
2
,x∈(-∞,a),則函數(shù)f(x)=x2+a+1的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
4
x
,
(1)判斷f(x)在區(qū)間(0,+∞)上的單調(diào)性,并證明你的結(jié)論;
(2)判斷f(x)在定義域上的奇偶性,并說明理由;
(3)求f(x)在[
1
2
,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的斜率e=
5
2
,且與橢圓
x2
13
+
y2
3
=1有共同的焦點,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log
1
2
(2x-1)
的定義域是( 。
A、[1,+∞)
B、(0,+∞)
C、[0,1]
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用配方法解方程:x2+2x-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)f(x)=-x2+4x在(-∞,2]上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x),對任意x,y∈R,有f(x+y)=f(x)•f(y),且當x>0時,f(x)>1.
(1)求證:對于x∈R,f(x)>0恒成立;
(2)求證:y=f(x)在R上為增函數(shù);
(3)若對于x∈R,f(2x)•f[m•22x-(m+1)•2x+2]>1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正△AOB頂點O位于坐標原點,另外兩個頂點在拋物線y2=2px(p>0)上,已知△AOB周長12
3
,求拋物線方程.

查看答案和解析>>

同步練習(xí)冊答案