【題目】一個(gè)商場經(jīng)銷某種商品,根據(jù)以往資料統(tǒng)計(jì),每位顧客采用的分期付款次數(shù)的分布列為:
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;采用2期或3期付款,其利潤為250元;采用4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.
(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;
(2)求的分布列及期望.
【答案】(1); (2).
【解析】
試題分析:(1)每位顧客采用1期付款的概率為,3位顧客采用1期付款的人數(shù)記為,則,
(2)分別計(jì)算利潤為200元、250元、300元的概率,再列出分布列和期望;
試題解析:(1);
(2)η的可能取值為200元,250元,300元.
P(η=200)=P(ξ=1)=0.4,
P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,
P(η=300)=1-P(η=200)-P(η=250)=1-0.4-0.4=0.2.
η的分布列為:
200 | 250 | 300 | |
P | 0.4 | 0.4 | 0.2 |
E(η)=200×0.4+250×0.4+300×0.2=240(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù). 為實(shí)數(shù),且,記由所有組成的數(shù)集為.
(1)已知,求;
(2)對任意的,恒成立,求的取值范圍;
(3)若,,判斷數(shù)集中是否存在最大的項(xiàng)?若存在,求出最大項(xiàng);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三點(diǎn)O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足| + |= ( + )+2.
(1)求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為直線l:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一位同學(xué)家里開了一個(gè)小賣部,他為了研究氣溫對熱茶銷售的影響,經(jīng)過統(tǒng)計(jì),得到一個(gè)賣出熱茶杯數(shù)與當(dāng)天氣溫的對比表如下:
氣溫x/℃ | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
熱茶銷售杯數(shù)y/杯 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
(1)畫出散點(diǎn)圖;
(2)你能從散點(diǎn)圖中發(fā)現(xiàn)氣溫與熱茶的銷售杯數(shù)之間關(guān)系的一般規(guī)律嗎?
(3)如果近似成線性關(guān)系的話,請畫出一條直線來近似地表示這種線性關(guān)系;
(4)試求出回歸直線方程;
(5)利用(4)的回歸方程,若某天的氣溫是2 ℃,預(yù)測這一天賣出熱茶的杯數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0).已知(1,e)和(e, )都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)A,B是橢圓上位于x軸上方的兩點(diǎn),且直線AF1與直線BF2平行,AF2與BF1交于點(diǎn)P.
(i)若AF1﹣BF2= ,求直線AF1的斜率;
(ii)求證:PF1+PF2是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ξ為隨機(jī)變量,從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時(shí),ξ=0;當(dāng)兩條棱平行時(shí),ξ的值為兩條棱之間的距離;當(dāng)兩條棱異面時(shí),ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的A,B,C三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為K(K為正整數(shù)).
(1)設(shè)生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時(shí)間;
(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)K的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,對任意的且 時(shí),有成立.
(1)判斷在上的單調(diào)性,并用定義證明;
(2)解不等式;
(3)若對任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com