化簡:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)
考點(diǎn):兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:由誘導(dǎo)公式及兩角和與差的余弦函數(shù)公式即可化簡.
解答: 解:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)
=sin(β+α)cos(β-γ)-cos(β+α)sin(β-γ)
=sin[(β+α)-(β-γ)]
=sin(α-γ).
點(diǎn)評:本題主要考查了誘導(dǎo)公式及兩角和與差的余弦函數(shù)公式的應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知凼數(shù)f(x)=2
3
sinxcosx-sin2x+
1
2
cos2x+
1
2
,x∈R,求函數(shù)f(x)在[-
π
4
,
π
2
]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠家生產(chǎn)甲、乙、丙三種樣式的杯子,每種杯子均有300ml和500ml兩種型號,某月的產(chǎn)量(單位:個)如下表所示:
型號甲樣式乙樣式丙樣式
300mlz25003000
500ml300045005000
按樣式用分層抽樣的方法在這個月生產(chǎn)的杯子中隨機(jī)的抽取100個,其中有乙樣式的杯子35個.
(Ⅰ)求z的值;
(Ⅱ)用分層抽樣的方法在甲樣式的杯子中抽取一個容量為5的樣本,從這個樣本中任取2個杯子,求至少有1個300ml的杯子的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,若b=
3
a
=
3
c
,則角B的值為(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+b=1,對?a,b∈(0,+∞),
1
a
+
4
b
≥|2x-1|-|x+1|恒成立,
(Ⅰ)求
1
a
+
4
b
的最小值;
(Ⅱ)求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊a,b,c滿足b2=ac
(1)求證:0<B≤
π
3

(2)求y=
1+sin2B
sinB+cosB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線a∥平面α,則( 。
A、平面α內(nèi)有且只有一條直線與a平行
B、平面α內(nèi)有無數(shù)條直線與a平行
C、平面α內(nèi)不存在與a垂直的直線
D、平面α內(nèi)有且只有一條直線與a垂直的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出函數(shù)y=Asin(ωx+φ)+k,(A>0,ω>0,0≤φ≤2π),的部分圖象,求解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
sinwx+coswx+1,(w>0)的最小正周期為π
(1)求實(shí)數(shù)w 的值;
(2)當(dāng)0≤x≤
π
4
時,求此函數(shù)的最值及此時的x值.

查看答案和解析>>

同步練習(xí)冊答案