【題目】在矩形ABCD中,對角線AC與相鄰兩邊所成的角為α,β,則cos2α+cos2β=1.類比到空間中一個正確命題是:在長方體ABCD﹣A1B1C1D1中,對角線AC1與相鄰三個面所成的角為α,β,γ,則有 .
【答案】cos2α+cos2β+cos2γ=2
【解析】解:我們將平面中的兩維性質,類比推斷到空間中的三維性質.
由在長方形中,設一條對角線與其一頂點出發(fā)的兩條邊所成的角分別是α,β,
則有cos2α+cos2β=1,
我們根據長方體性質可以類比推斷出空間性質,
∵長方體ABCD﹣A1B1C1D1中,
對角線AC1與過A點的三個面ABCD,AA1B1B、AA1D1D所成的角分別為α,β,γ,
∴cosα= ,cosβ= ,cosγ= ,
∴cos2α+cos2β+cos2γ
= =2.
所以答案是:cos2α+cos2β+cos2γ=2.
【考點精析】認真審題,首先需要了解類比推理(根據兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質的推理,叫做類比推理).
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB= =AC=2,E,F分別為A1C1 , BC的中點.
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校開設A、B、C、D、E五門選修課,要求每位同學彼此獨立地從中選修3門課程.某甲同學必選A課程,不選B課程,另從其余課程中隨機任選兩門課程.乙、丙兩名同學從五門課程中隨機任選三門課程.
(1)求甲同學選中C課程且乙、丙同學未選C課程的概率;
(2)用X表示甲、乙、丙選中C課程的人數之和,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在△ABC中, , ,點D是BC的中點. ( I)求證: ;
( II)直線l過點D且垂直于BC,E為l上任意一點,求證: 為常數,并求該常數;
( III)如圖2,若 ,F為線段AD上的任意一點,求 的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足an+1= an2﹣ nan+1(n∈N*),且a1=3.
(1)計算a2 , a3 , a4的值,由此猜想數列{an}的通項公式,并給出證明;
(2)求證:當n≥2時,ann≥4nn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+2|﹣|x+a|
(1)當a=3時,解不等式f(x)≤ ;
(2)若關于x的不等式f(x)≤a解集為R,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為獲得較好的收益,每年要投入一定資金用于廣告促銷,經調查,每年投入廣告費(百萬元),可增加銷售額約為(百萬元)()
(1)若該公司當年的廣告費控制在4百萬元之內,則應該設入多少廣告費,才能使該公司獲得的收益最大?
(2)現該公司準備共投入6百萬元,分別用于廣告促銷售和技術改造,經預測,每設入技術改造費(百萬元),可增加銷售額約為(百萬元),請設計一種資金分配方案,使該公司由此獲得最大收益.(注:收益銷售額成本)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com