【題目】已知函數(shù)f(x)=|x+2|﹣|x+a|
(1)當a=3時,解不等式f(x)≤ ;
(2)若關于x的不等式f(x)≤a解集為R,求a的取值范圍.
【答案】
(1)解:當a=3時,f(x)=|x+2|﹣|x+3|,
或
或 ,
即 或 或 φ或 或x≥﹣2,
故不等式的解集為:
(2)解:由x的不等式f(x)≤a解集為R,
得函數(shù)f(x)max≤a,
∵||x+2|﹣|x+a||≤|(x+2)﹣(x+a)|=|2﹣a|=|a﹣2|(當且僅當(x+2)(x+a)≥0取“=”)
∴|a﹣2|≤a,
∴ 或 ,
解得:a≥1.
【解析】(1)將a=1代入f(x),得到關于f(x)的分段函數(shù),求出不等式的解集即可;(2)求出f(x)的最大值,得到|a﹣2|≤a,解出即可.
【考點精析】利用絕對值不等式的解法對題目進行判斷即可得到答案,需要熟知含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)滿足條件,且函數(shù)是偶函數(shù),當時, ;當時, 的最小值為,則=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,對角線AC與相鄰兩邊所成的角為α,β,則cos2α+cos2β=1.類比到空間中一個正確命題是:在長方體ABCD﹣A1B1C1D1中,對角線AC1與相鄰三個面所成的角為α,β,γ,則有 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢驗學習情況,某培訓機構于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設成績不低于90分者命名為“優(yōu)秀學員”.
(1)分別求甲、乙兩班學員成績的平均分(結果保留一位小數(shù));
(2)從甲班4名優(yōu)秀學員中抽取兩人,從乙班2名80分以下的學員中抽取一人,求三人平均分不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列中, 分別是下表中第行中的某一個數(shù),且中任何兩個數(shù)不在下表的同一列中.
第列 | 第列 | 第列 | |
第行 | |||
第行 | |||
第行 |
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結論中不正確的是( )
A.y與x具有正的線性相關關系
B.回歸直線過樣本點的中心( , )
C.若該大學某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,我市某居民小區(qū)擬在邊長為1百米的正方形地塊ABCD上劃出一個三角形地塊APQ種植草坪,兩個三角形地塊PAB與QAD種植花卉,一個三角形地塊CPQ設計成水景噴泉,四周鋪設小路供居民平時休閑散步,點P在邊BC上,點Q在邊CD上,記∠PAB=a.
(1)當∠PAQ= 時,求花卉種植面積S關于a的函數(shù)表達式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,我國南海某處的一個圓形海域上有四個小島,小島B與小島A、小島C相距都為5n mile,與小島D相距為 n mile.小島A對小島B與D的視角為鈍角,且 .
(Ⅰ)求小島A與小島D之間的距離和四個小島所形成的四邊形的面積;
(Ⅱ)記小島D對小島B與C的視角為α,小島B對小島C與D的視角為β,求sin(2α+β)的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com