【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB= =AC=2,E,F(xiàn)分別為A1C1 , BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE.
【答案】
(1)證明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,
∴BB1⊥AB,∵
∴AB⊥BC,
∵BC∩BB1=B,∴AB⊥平面B1BCC1,
又AB平面ABE,
∴平面ABE⊥平面B1BCC1
(2)證明:取AB的中點(diǎn)G,連接EG,F(xiàn)G,
∵E,F(xiàn)分別是A1C1,BC的中點(diǎn),
∴ ,∵ ,∴ ,
∴FGEC1為平行四邊形,∴C1F∥EG,
又EG平面ABE,C1F平面ABE,
∴C1F∥平面ABE.
【解析】(1)運(yùn)用直三棱柱側(cè)棱垂直于底面,以及勾股定理的逆定理,由線面垂直的判定定理可得AB⊥平面B1BCC1 , 再由面面垂直的判定定理即可得證;(2)取AB的中點(diǎn)G,連接EG,F(xiàn)G,運(yùn)用平行四邊形的判定和性質(zhì),結(jié)合線面平行的判定定理,即可得證.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對平面與平面垂直的判定的理解,了解一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(其中a實(shí)數(shù),e是自然對數(shù)的底數(shù)).
(1)當(dāng)a=5時(shí),求函數(shù)y=g(x)在點(diǎn)(1,e)處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若存在x1 , x2∈[e﹣1 , e](x1≠x2),使方程g(x)=2exf(x)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足條件,且函數(shù)是偶函數(shù),當(dāng)時(shí), ;當(dāng)時(shí), 的最小值為,則=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高一年級期中考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)用分層抽樣的方法在分?jǐn)?shù)段為[60,80)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[70,80)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率;
(2)求ξ的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在多面體SP﹣ABCD中,底面ABCD為矩形,AB=PC=1,AD=AS=2,且AS∥CP且AS⊥面ABCD,E為BC的中點(diǎn).
(1)求證:AE∥面SPD;
(2)求三棱錐S-BPD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,對角線AC與相鄰兩邊所成的角為α,β,則cos2α+cos2β=1.類比到空間中一個(gè)正確命題是:在長方體ABCD﹣A1B1C1D1中,對角線AC1與相鄰三個(gè)面所成的角為α,β,γ,則有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結(jié)論中不正確的是( )
A.y與x具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點(diǎn)的中心( , )
C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com