分析 (1)運用數(shù)列的通項和求和的關(guān)系,再由等比數(shù)列的定義,即可得證;
(2)運用等比數(shù)列的通項公式,求得an,再由對數(shù)的運算性質(zhì),化簡bn,再由裂項相消求和,即可得到所求.
解答 解:(1)證明:a1=1,且an=-Sn-1(n∈N*).①
an-1=-Sn-1-1(n≥2).②
①-②可得,an-an-1=-(Sn-Sn-1)=-an,
即為2an=an-1,即$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{2}$,
則數(shù)列{an}是首項為1,$\frac{1}{2}$為公比的等比數(shù)列;
(2)an=$\frac{1}{{2}^{n-1}}$,
bn=$\frac{6}{lo{g}_{2}{a}_{n+1}•lo{g}_{2}{a}_{n+2}}$=$\frac{6}{lo{g}_{2}\frac{1}{{2}^{n}}•lo{g}_{2}\frac{1}{{2}^{n+1}}}$
=$\frac{6}{n(n+1)}$=6($\frac{1}{n}$-$\frac{1}{n+1}$),
則前n項和Tn=6(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=6(1-$\frac{1}{n+1}$)=$\frac{6n}{n+1}$.
點評 本題考查等比數(shù)列的定義和通項公式的運用,考查數(shù)列的求和方法:裂項相消求和,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{c}$ | B. | $\frac{sinB}{sinA}$ | C. | $\frac{sinC}{c}$ | D. | $\frac{c}{sinC}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
到社會福利院慰問老人 | 到車站做義工 | 總計 | |
高一 | 11 | 16 | 27 |
高二 | 15 | 8 | 23 |
總計 | 26 | 24 | 50 |
參考數(shù)據(jù) | P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | -$\frac{3\sqrt{2}}{2}$ | D. | ±$\frac{3\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{S_1}{a_1}$ | B. | $\frac{{{S_{1007}}}}{{{a_{1007}}}}$ | C. | $\frac{{S}_{1008}}{{a}_{1008}}$ | D. | $\frac{{S}_{2014}}{{a}_{2014}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,4) | B. | (2,4) | C. | (1,2) | D. | (1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com