20.已知數(shù)列{an}滿足a1=a2=1,且an+2=$\frac{1}{{a}_{n+1}}$+an(n=1,2,3…)求a2004

分析 把原遞推式變形,可得$\frac{{a}_{n+2}}{{a}_{n}}=\frac{n+1}{n}$,然后利用累積法求得a2004

解答 解:由原式可得an+2an+1-an+1an=1,
令bn=an+1an,則b1=a2a1=1,
故bn=n,即an+1an=n,而an+2an+1=n+1,
故$\frac{{a}_{n+2}}{{a}_{n}}=\frac{n+1}{n}$,
${a}_{2004}=\frac{2003}{2002}{a}_{2002}=\frac{2003}{2002}•\frac{2001}{2000}•{a}_{2000}$=…=$\frac{2003}{2002}•\frac{2001}{2000}•\frac{1999}{1998}…\frac{3}{2}•{a}_{2}$
=$\frac{2003•2001•1999…3•1}{2002•2000•1998…2}$=$\frac{2003•2001•1999…3•1•2002•2000•1998…2}{(2002•2000•1998…2)^{2}}$
=$\frac{2003!}{(2002•2000•1998…2)^{2}}$=$\frac{2003!}{[{2}^{1001}•(1001•1000•999…1)]^{2}}$
=$\frac{2003!}{{2}^{2002}•(1001!)^{2}}$.

點(diǎn)評 本題考查數(shù)列遞推式,考查了累積法求數(shù)列的通項公式,考查靈活變形能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點(diǎn)M(3,-2),N(-5,-1),且$\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MN}$,則點(diǎn)P是( 。
A.(-8,1)B.(-1,-$\frac{3}{2}$)C.(1,$\frac{3}{2}$)D.(8,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,(-1≤x≤0)}\\{cosx,(0<x≤\frac{π}{2})}\end{array}\right.$,則${∫}_{-1}^{\frac{π}{2}}$f(x)dx=( 。
A.$\frac{1}{2}$B.1C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的導(dǎo)數(shù):
(1)y=$\frac{{x}^{2}-1}{2-x}$;
(2)y=$\frac{sinx}{1+cosx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知曲線y=-$\frac{1}{3}$x3+2與曲線y=4x2-1在x=x0處的切線互相垂直,則x0的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC三邊為a,b,c三邊所對角為A,B,C,滿足 acosC+$\frac{1}{2}$c=b.
(1)求角A.
(2)若a=1,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,向量$\overrightarrow{p}$=(sinA+sinC,sinB),向量$\overrightarrow{q}$=(a-c,b-a),且滿足$\overrightarrow{p}$⊥$\overrightarrow{q}$.
(1)求△ABC的內(nèi)角C的值;
(2)若c=2,2sin2A+sin(2B+C)=sinC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)x+y2=${∫}_{0}^{y-x}$cos2tdt,求$\frac{dy}{dx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.動點(diǎn)M與定點(diǎn)F(-1,0)的距離和它到定直線x=-4的距離的比是$\frac{1}{2}$,則點(diǎn)M的軌跡方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

同步練習(xí)冊答案