3.執(zhí)行如圖程序框圖,如果輸入的依次為3,5,3,5,5,4,4,3,4,4,則輸出的s為4.

分析 框圖的功能是求數(shù)據(jù)3、5、3、5、5、4、4、3、4、4的平均數(shù),利用平均數(shù)公式計(jì)算可得答案.

解答 解:由程序框圖知:算法的功能是求數(shù)據(jù)3、5、3、5、5、4、4、3、4、4的平均數(shù),
∴輸出的S=$\frac{3+5+3+5+5+4+4+3+4+4}{10}$=4.
故答案為:4.

點(diǎn)評(píng) 本題考查了當(dāng)型循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若非零實(shí)數(shù)x、y、z滿足2x=3y=6z,則$\frac{x+y}{z}$的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)pn(an,bn)(n∈N+)在直線l:y=3x+1上,p1是直線l與y軸的交點(diǎn),數(shù)列{an}是公差為1的等差數(shù)列.求數(shù)列{an},{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點(diǎn)A(0,1)、B(0,-1),P是一個(gè)動(dòng)點(diǎn),且直線PA、PB斜率之積為-$\frac{1}{2}$.求動(dòng)點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若tanα=-$\frac{1}{2}$,則$\frac{sin2α+2cos2α}{4cos2α-4sin2α}$的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.利用|z2|=z•$\overline{z}$解下列各題:
(1)若|z|=1,求證:|$\frac{α-z}{1-\overline{α}z}$|=1(其中α∈C);
(2)若|z|=1,求|z2-z+1|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對(duì)于二元函數(shù)有如下定義:對(duì)于平面點(diǎn)集D,若按照某種對(duì)應(yīng)法則f使得D中的每一點(diǎn)P(x,y)都有唯一的實(shí)數(shù)z與之對(duì)應(yīng),則稱f為在D上的二元函數(shù).D稱為二元函數(shù)的定義域,全體函數(shù)值構(gòu)成的集合稱為二元函數(shù)的值域,使得f(x,y)=0成立的實(shí)數(shù)對(duì)(x,y)稱為二元函數(shù)的“上升點(diǎn)”,若二元函數(shù)f(x,y)=3+sin[π+(2x+$\frac{1}{2}$)]-$\frac{2{x}^{2}+16xy+32{y}^{2}+2}{x+4y}$,(x,y)∈D1存在“上升點(diǎn)”,則二元函數(shù)h(x,y)=(x+4)2+(y+3)2,(x,y)∈D1的最小值為( 。
A.$\sqrt{13}$B.17C.$\frac{53}{4}$D.$\frac{\sqrt{53}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.指數(shù)函數(shù)y=ax(a>0且a≠1)的圖象經(jīng)過點(diǎn)( 。
A.(0,0)B.(0,1)C.(1,1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知在△ABC中,b=2c,角A的平分線長(zhǎng)m,m=kc,則k的取值范圍是k∈(0,$\frac{4}{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案