13.已知直線$l:x=\frac{a^2}{c}$是橢圓$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0,c=\sqrt{{a^2}-{b^2}}})$的右準(zhǔn)線,若橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,右準(zhǔn)線方程為x=2.
(1)求橢圓Γ的方程;
(2)已知一直線AB過(guò)右焦點(diǎn)F(c,0),交橢圓Γ于A,B兩點(diǎn),P為橢圓Γ的左頂點(diǎn),PA,PB與右準(zhǔn)線交于點(diǎn)M(xM,yM),N(xN,yN),問(wèn)yM•yN是否為定值,若是,求出該定值,否則說(shuō)明理由.

分析 (1)由題意可知:e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{{a}^{2}}{c}$=2,即可求得a和b的值,求得橢圓Γ的方程;
(2)設(shè)AB的方程:x=my+1,代入橢圓方程由韋達(dá)定理求得直線PA的方程,代入即可求得yM=$\frac{{y}_{1}}{{x}_{1}+\sqrt{2}}$(2+$\sqrt{2}$),yN=$\frac{{y}_{2}}{{x}_{2}+\sqrt{2}}$(2+$\sqrt{2}$),yM•yN=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{({x}_{1}+\sqrt{2})({x}_{2}+\sqrt{2})}$=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{(m{y}_{1}+1+\sqrt{2})(m{y}_{2}+1+\sqrt{2})}$,代入即可求得yM•yN=-1.

解答 解:(1)依題意:橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{{a}^{2}}{c}$=2,則a=$\sqrt{2}$,b=1,c=1,
故橢圓Γ方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$;     …(4分)
(2)設(shè)AB的方程:x=my+1,A(x1,y1),B(x2,y2),
則$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(m2+2)y2+2my-1=0,
△=(-2m)2+4(m2+2)>0,
由韋達(dá)定理得:y1+y2=-$\frac{2m}{{m}^{2}+2}$,y1•y2=-$\frac{1}{{m}^{2}+2}$,…(6分)
直線PA:y=$\frac{{y}_{1}-0}{{x}_{1}+\sqrt{2}}$(x+$\sqrt{2}$),
令x=2,得yM=$\frac{{y}_{1}}{{x}_{1}+\sqrt{2}}$(2+$\sqrt{2}$),
同理:yN=$\frac{{y}_{2}}{{x}_{2}+\sqrt{2}}$(2+$\sqrt{2}$),…(8分)
∴yM•yN=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{({x}_{1}+\sqrt{2})({x}_{2}+\sqrt{2})}$=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{(m{y}_{1}+1+\sqrt{2})(m{y}_{2}+1+\sqrt{2})}$,
=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{{m}^{2}{y}_{1}{y}_{2}+(1+\sqrt{2})m({y}_{1}+{y}_{2})+(1+\sqrt{2})^{2}}$,
=$\frac{(2+\sqrt{2})^{2}(-\frac{1}{{m}^{2}+2})}{{m}^{2}(-\frac{1}{{m}^{2}+2})+(1+\sqrt{2})m(-\frac{2m}{{m}^{2}+2})+(1+\sqrt{2})^{2}}$,
=$\frac{-(2+\sqrt{2})^{2}}{-{m}^{2}-2(1+\sqrt{2}){m}^{2}+(1+\sqrt{2})^{2}({m}^{2}+2)}$,
=$\frac{-(6+4\sqrt{2})}{2(1+\sqrt{2})^{2}}$=$\frac{-(6+4\sqrt{2})}{6+4\sqrt{2}}$=-1,
yM•yN=-1,
yM•yN是定值,定值為-1.…(12分)

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,考查韋達(dá)定理及直線的斜率公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.一個(gè)幾何體的三視圖如圖所示,則該幾何體最長(zhǎng)的側(cè)棱長(zhǎng)為( 。
A.2B.$\sqrt{5}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,則該三角形的形狀是( 。
A.鈍角三角形B.銳角三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=Acos(x+\frac{π}{6})$,x∈R,且$f(\frac{π}{12})=\sqrt{2}$.
(Ⅰ)求A的值;
(Ⅱ)設(shè)α,β∈[0,$\frac{π}{2}$],$f(α+\frac{π}{3})$=-$\frac{24}{13}$,$f(β-\frac{π}{6})=\frac{8}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-4≤0\\ y-1≥0\\ x-1≥0\end{array}\right.$,則z=xy的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在平面四邊形ABCD中,已知$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,則四邊形ABCD的面積為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知集合A={x||x|≤2},B={x|3x-2≥1},則A∩B={x|1≤x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.${({2-\sqrt{x}})^n}$的二次展開式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為256,則展開式中x4項(xiàng)的系數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若$\overrightarrow a=(1,2)$,$\overrightarrow b=(2,-1)$,則$2\overrightarrow a-\overrightarrow b$=(  )
A.(-4,1)B.(0,1)C.(-4,5)D.(0,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案