分析 (1)兩定圓的圓心分別是C1(0,1),C2,(0,-1),半徑分別為1,1,則動(dòng)圓圓心M的軌跡方程可求.
(2)設(shè)動(dòng)圓圓心M(x,y),半徑為r,則|MC1|=r+3,|MC2|=r-1,可得|MC1|-|MC2|=r+3-r+1=4<|C1C2|=6,利用雙曲線的定義,即可求動(dòng)圓圓心M的軌跡方程.
解答 解:(1)兩定圓的圓心分別是C1(0,1),C2,(0,-1),半徑分別為1,1.
∵所求圓與兩個(gè)圓都外切,
∴點(diǎn)M的軌跡為x軸,方程為y=0(x≠0);
(2)設(shè)動(dòng)圓圓心M的坐標(biāo)為(x,y),半徑為r,則|MC1|=r+3,|MC2|=r-1,
∴|MC1|-|MC2|=r+3-r+1=4<|C1C2|=6,
由雙曲線的定義知,點(diǎn)M的軌跡是以C1、C2為焦點(diǎn)的雙曲線的右支,且2a=4,a=2,
雙曲線的方程為:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2).
點(diǎn)評(píng) 本題考查了軌跡方程的求法,考查了圓與圓的位置關(guān)系,訓(xùn)練了利用定義求雙曲線的方程,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2017屆四川成都七中高三10月段測(cè)數(shù)學(xué)(文)試卷(解析版) 題型:解答題
選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線.
(1)求曲線的普通方程,并將的方程化為極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程為,其中滿足,若曲線與的公共點(diǎn)都在上,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com