4.不等式組$\left\{\begin{array}{l}{|x-1|-3<0}\\{a-2x>0}\end{array}\right.$的解集為-2<x<3,則a的取值范圍是(  )
A.a≤-4B.a=6C.a≤6D.a≥6

分析 化簡不等式組$\left\{\begin{array}{l}{|x-1|-3<0}\\{a-2x>0}\end{array}\right.$,再根據(jù)不等式組的解集求出a的值.

解答 解:∵不等式組$\left\{\begin{array}{l}{|x-1|-3<0}\\{a-2x>0}\end{array}\right.$可化為
$\left\{\begin{array}{l}{|x-1|<3}\\{-2x>-a}\end{array}\right.$,
解得$\left\{\begin{array}{l}{-2<x<4}\\{x<\frac{a}{2}}\end{array}\right.$;
又原不等式組的解集為-2<x<3,
∴$\frac{a}{2}$=3,即a=6.
故選:B.

點(diǎn)評 本題考查了不等式組的解法與應(yīng)用問題,也考查了邏輯推理能力的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知M={(x,y)|$\left\{\begin{array}{l}{x=sinθ}\\{y=2cosθ}\end{array}\right.$,θ∈(0,2π)},Nr={(x,y)|x2+y2≤r2,r<0},則滿足M⊆Nr的r最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,a+b=3c,則cosA•cosB•cosC的最大值為( 。
A.$\frac{7}{81}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn=2an-3•2n+4(n∈N*
(1)求證:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列;
(2)設(shè)Tn數(shù)列{Sn-4}的前n項(xiàng)和,求Tn
(3)設(shè)cn=$\frac{{(3n+5)2}^{n-1}}{{a}_{n}{a}_{n+1}}$,數(shù)列{cn}的前n項(xiàng)和為Qn,求證:$\frac{2}{5}$≤Qn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解不等式$\frac{{x}^{2}-2x-1}{x-1}$≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下表是枝江一中高三學(xué)生公寓樓1~4月份用水量(單位:噸)的一組數(shù)據(jù):
月份x1234
用水量y4.5432.5
由散點(diǎn)圖可知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是$\widehat{y}$=-0.7x+a,則預(yù)測5月份的用水量約為(  )
A.1.6B.1.65C.1.7D.1.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.解不等式:$\frac{5-2x}{x+3}<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.解不等式:$\frac{(x-1)^{3}({x}^{2}+x+6)}{(x+3)^{2}}$≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)對任意實(shí)數(shù)a、b,都有f(ab)=f(a)+f(b)成立,求f(0),f(1)的值.

查看答案和解析>>

同步練習(xí)冊答案