【題目】已知函數(shù),在區(qū)間內(nèi)任取兩個實(shí)數(shù),,且,若不等式恒成立,則實(shí)數(shù)的取值范圍是
A. B. C. D.
【答案】B
【解析】
分析:首先,由的幾何意義,得到直線的斜率,然后,得到函數(shù)圖象上在區(qū)間(1,2)內(nèi)任意兩點(diǎn)連線的斜率大于1,從而得到f′(x)=>1 在(1,2)內(nèi)恒成立.分離參數(shù)后,轉(zhuǎn)化成 a>2x2+3x+1在(1,2)內(nèi)恒成立.從而求解得到a的取值范圍.
詳解:∵的幾何意義為:
表示點(diǎn)(p+1,f(p+1)) 與點(diǎn)(q+1,f(q+1))連線的斜率,
∵實(shí)數(shù)p,q在區(qū)間(0,1)內(nèi),故p+1 和q+1在區(qū)間(1,2)內(nèi).
不等式>1恒成立,
∴函數(shù)圖象上在區(qū)間(1,2)內(nèi)任意兩點(diǎn)連線的斜率大于1,
故函數(shù)的導(dǎo)數(shù)大于1在(1,2)內(nèi)恒成立.
由函數(shù)的定義域知,x>﹣1,
∴f′(x)=>1 在(1,2)內(nèi)恒成立.
即 a>2x2+3x+1在(1,2)內(nèi)恒成立.
由于二次函數(shù)y=2x2+3x+1在[1,2]上是單調(diào)增函數(shù),
故 x=2時,y=2x2+3x+1在[1,2]上取最大值為15,
∴a≥15
∴a∈[15,+∞).
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AC為⊙O的直徑,D為 的中點(diǎn),E為BC的中點(diǎn).
(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱中,為的中點(diǎn).
(1)求證:;
(2)若點(diǎn)為四邊形內(nèi)部及其邊界上的點(diǎn),且三棱錐的體積為三棱柱體積的,試在圖中畫出點(diǎn)的軌跡,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)y=f(x)滿足f(3)=0,且當(dāng)x>0時,不等式f(x)>﹣xf′(x)恒成立,則函數(shù)g(x)=xf(x)+lg|x+1|的零點(diǎn)的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù));以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)若把曲線各點(diǎn)的橫坐標(biāo)伸長到原來的倍,縱坐標(biāo)變?yōu)樵瓉淼?/span>,得到曲線,求曲線的方程;
(Ⅲ)設(shè)為曲線上的動點(diǎn),求點(diǎn)到曲線上點(diǎn)的距離的最小值,并求此時點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊(duì)奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項(xiàng)目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運(yùn)動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運(yùn)動員只有在摔倒或到達(dá)終點(diǎn)時才停止滑行,現(xiàn)在用表示該運(yùn)動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).
(1)求該運(yùn)動員停止滑行時恰好已順利通過個交接口的概率;
(2)求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=4,點(diǎn)F( ,0),以線段MF為直徑的圓內(nèi)切于圓O,記點(diǎn)M的軌跡為C
(1)求曲線C的方程;
(2)若過F的直線l與曲線C交于A,B兩點(diǎn),問:在x軸上是否存在點(diǎn)N,使得 為定值?若存在,求出點(diǎn)N坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com