如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別為BA,AD,DC,CB邊上的中點(diǎn).則下列說法中不正確的是( 。
A、四邊形EFGH為平行四邊形
B、直線AC∥平面EFGH
C、若棱AC=BD,則四邊形EFGH為矩形
D、若棱AC=BD,則四邊形EFGH為菱形
考點(diǎn):命題的真假判斷與應(yīng)用
專題:空間位置關(guān)系與距離
分析:在空間四邊形ABCD中,由E,F(xiàn),G,H分別為BA,AD,DC,CB邊上的中點(diǎn),利用三角形中位線知識得到線與線的平行關(guān)系,然后逐一核對四個選項(xiàng)得答案.
解答: 解:∵E,F(xiàn)分別為BA,AD邊上的中點(diǎn),G,H分別為DC,CB邊上的中點(diǎn),
∴EF∥BD且EF=
1
2
BD
,GH∥BD且GH=
1
2
BD
,則EF∥GH且EF=GH.
∴四邊形EFGH為平行四邊形.選項(xiàng)A正確;
∵E,H分別為BA,CB邊上的中點(diǎn),
∴EH∥AC,
又EH?面EFGH,AC?面EFGH,
∴直線AC∥平面EFGH.選項(xiàng)B正確;
由選項(xiàng)A知,四邊形EFGH為平行四邊形,
若棱AC=BD,則四邊形EFGH為菱形.選項(xiàng)C錯誤,選項(xiàng)D正確.
故選:C.
點(diǎn)評:本題考查命題的真假判斷與應(yīng)用,考查了學(xué)生的空間想象能力和思維能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=1+
4
5
cosx的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若A=120°,B=45°,a=
2
,則b=( 。
A、2
B、
2
3
3
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={2,a},B={1,2,3},則“a=3”是“A⊆B”的(  )
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分亦非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解高中生作文成績與課外閱讀量之間的關(guān)系,某研究機(jī)構(gòu)隨機(jī)抽取60名高中生做問卷調(diào)查,得到以下數(shù)據(jù):
作文成績優(yōu)秀 作文成績一般 總計
課外閱讀量較大 22 10 32
課外閱讀量一般 8 20 28
總計 30 30 60
由以上數(shù)據(jù),計算得到K2的觀測值k≈9.643,根據(jù)臨界值表,以下說法正確的是( 。
A、在樣本數(shù)據(jù)中沒有發(fā)現(xiàn)足夠證據(jù)支持結(jié)論“作文成績優(yōu)秀與課外閱讀量大有關(guān)”
B、在犯錯誤的概率不超過0.001的前提下認(rèn)為作文成績優(yōu)秀與課外閱讀量大有關(guān)
C、在犯錯誤的概率不超過0.05的前提下認(rèn)為作文成績優(yōu)秀與課外閱讀量大有關(guān)
D、在犯錯誤的概率不超過0.005的前提下認(rèn)為作文成績優(yōu)秀與課外閱讀量大有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場在國慶黃金周的促銷活動中,對10月1日9時至14時的銷售額進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示.已知9時至10時的銷售額為3萬元,則11時至12時的銷售額為( 。
A、8萬元B、10萬元
C、12萬元D、15萬

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),設(shè)z=1+i(i是虛數(shù)單位),則復(fù)數(shù)
2
z
+z2對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將6名報名參加運(yùn)動會的同學(xué)分別安排到跳繩、接力,投籃三項(xiàng)比賽中(假設(shè)這些比賽都不設(shè)人數(shù)上限),每人只參加一項(xiàng),則共有x種不同的方案,若每項(xiàng)比賽至少要安排一人時,則共有y種不同的方案,其中x+y的值為( 。
A、1269B、1206
C、1719D、756

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2asin(2x-
π
3
)+b的定義域?yàn)閇0,
π
2
],值域?yàn)閇-5,1],求a和b的值.

查看答案和解析>>

同步練習(xí)冊答案