設(shè)數(shù)列{an}滿足a1=1,a2=2,an=(an-1+2an-2)(n=3,4,…).?dāng)?shù)列{bn}滿足b1=1,bn(n=2,3,…)是非零整數(shù),且對(duì)任意的正整數(shù)m和自然數(shù)k,都有-1≤bm+bm+1+…+bm+k≤1.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)記cn=nanbn(n=1,2,…),求數(shù)列{cn}的前n項(xiàng)和Sn
【答案】分析:(1)由(n≥3),所以,再用累加法求出an,再由n的奇偶性進(jìn)行討論知bn
(2),再由n的奇偶性分別計(jì)算數(shù)列{cn}的前n項(xiàng)和Sn
解答:解:(1)由(n≥3)
又a2-a1=1≠0,
∴數(shù)列{an+1-an}是首項(xiàng)為1公比為的等比數(shù)列,
an=a1+(a2-a1)+(a3-a2)+(a4-a3)++(an-an-1
=
=
當(dāng)n為奇數(shù)時(shí)當(dāng)n為偶數(shù)時(shí)

得b2=-1,

得b3=1,
同理可得當(dāng)n為偶數(shù)時(shí),bn=-1;當(dāng)n為奇數(shù)時(shí),bn=1;
因此
(2)
Sn=c1+c2+c3+c4++cn
當(dāng)n為奇數(shù)時(shí),=
當(dāng)n為偶數(shù)時(shí)
=

①×得:
①-②得:=

當(dāng)n為奇數(shù)時(shí)當(dāng)n為偶數(shù)時(shí)
因此
點(diǎn)評(píng):本題考查數(shù)列性質(zhì)的綜合應(yīng)用,解題時(shí)要注意公式的靈活運(yùn)用,尤其是在求值時(shí)要重視對(duì)n的奇偶性的討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=1,且對(duì)任意的n∈N*,點(diǎn)Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數(shù)列{an}的通項(xiàng)公式為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照一模)若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí).
則{cn}
是公差為8的準(zhǔn)等差數(shù)列.
(I)設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式:
(Ⅱ)設(shè)(I)中的數(shù)列{an}的前n項(xiàng)和為Sn,試研究:是否存在實(shí)數(shù)a,使得數(shù)列Sn有連續(xù)的兩項(xiàng)都等于50.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照一模)若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí)
,則數(shù)列{cn}是公差為8的準(zhǔn)等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準(zhǔn)等差數(shù)列;
(Ⅱ)求證:{an}的通項(xiàng)公式及前20項(xiàng)和S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2+a4=6,且對(duì)任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數(shù)列{cn}的前n項(xiàng)和Sn為( 。
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:a1=2,an+1=1-
1
an
,令An=a1a2an,則A2013
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案